Advertisement

Science China Earth Sciences

, Volume 61, Issue 7, pp 823–852 | Cite as

Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling

  • Mingqi Liu
  • Zhonghai Li
Review
  • 113 Downloads

Abstract

Thinning of the cratonic lithosphere is common in nature, but its destruction is not. In either case, the mechanisms for both thinning and destruction are still widely under debate. In this study, we have made a review on the processes and mechanisms of thinning and destruction of cratonic lithosphere according to previous studies of geological/geophysical observations and numerical simulations, with specific application to the North China Craton (NCC). Two main models are suggested for the thinning and destruction of the NCC, both of which are related to subduction of the oceanic lithosphere. One is the “bottom-up” model, in which the deeply subducting slab perturbs and induces upwelling from the hydrous mantle transition zone (MTZ). The upwelling produces mantle convection and erodes the bottom of the overriding lithosphere by the fluid-melt-peridotite reaction. Mineral compositions and rheological properties of the overriding lithospheric mantle are changed, allowing downward dripping of lithospheric components into the asthenosphere. Consequently, lithospheric thinning or even destruction occurs. The other is the “top-down” model, characterized by the flat subduction of oceanic slab beneath the overriding cratonic lithosphere. Dehydration reactions from the subducting slab would significantly hydrate the lithospheric mantle and decrease its rheological strength. Then the subduction angle may be changed from shallow to steep, inducing lateral upwelling of the asthenosphere. This upwelling would heat and weaken the overriding lithospheric mantle, which led to the weakened lithospheric mantle dripping into the asthenosphere. These two models have some similarities, in that both take the subducting oceanic slab and relevant fluid migration as the major driving mechanism for thinning or destruction of the overriding cratonic lithosphere. The key difference between the two models is the effective depth of the subducting oceanic slab. One is stagnation and flattening in the MTZ, whereas the other is flat subduction at the bottom of the cratonic lithosphere. In the NCC, the eastern lithosphere was likely affected by subduction of the Izanagi slab during the Mesozoic, which would have perturbed the asthenosphere and the MTZ, and induced fluid migration beneath the NCC lithosphere. The upwelling fluid may largely have controlled the reworking of the NCC lithosphere. In order to discuss and analyze these two models further, it is crucial to understand the role of fluids in the subduction zone and the MTZ. Here, we systematically discuss phase transformations of hydrous minerals and the transport processes of water in the subduction system. Furthermore, we analyze possible modes of fluid activity and the problems to explore the applied feasibility of each model. In order to achieve a comprehensive understanding of the mechanisms for thinning and destruction of cratonic lithosphere, we also consider four additional possible dynamic models: extension-induced lithospheric thinning, compression-induced lithospheric thickening and delamination, large-scale mantle convection and thermal erosion, and mantle plume erosion. Compared to the subduction-related models presented here, these four models are primarily controlled by the relatively simple and single process and mechanism (extension, compression, convection, and mantle plume, respectively), which could be the secondary driving mechanisms for the thinning and destruction of lithosphere.

Keywords

Lithospheric thinning Cratonic destruction Big mantle wedge Plate subduction Fluid migration Numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Thorough and constructive reviews by the editor Yong-Fei Zheng and three anonymous reviewers help improvement of the presentation. In addition, constructive comments by Ling Chen and Juan Li are gratefully acknowledged. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41622404, 41688103), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB18000000), and the National Key Basic Research and Development Program of China (Grant No. 2015CB856106).

References

  1. Arcay D, Tric E, Doin M P. 2007. Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes. Earth Planet Sci Lett, 255: 324–338CrossRefGoogle Scholar
  2. Artemieva I M. 2006. Global 1°×1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics, 416: 245–277CrossRefGoogle Scholar
  3. Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646CrossRefGoogle Scholar
  4. Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44CrossRefGoogle Scholar
  5. Bird P. 1979. Continental delamination and the colorado plateau. J Geophys Res, 84: 7561–7571CrossRefGoogle Scholar
  6. Boyd O S, Jones C H, Sheehan A F. 2004. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science, 305: 660–662CrossRefGoogle Scholar
  7. Buck W R, Toksöz M N. 1983. Thermal effects of continental collisions: Thickening a variable viscosity lithosphere. Tectonophysics, 100: 53–69CrossRefGoogle Scholar
  8. Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett, 99: 79–93CrossRefGoogle Scholar
  9. Carlson R W, Irving A J. 1994. Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet Sci Lett, 126: 457–472CrossRefGoogle Scholar
  10. Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: 353–377CrossRefGoogle Scholar
  11. Casanova N, McCammon C A, Mackwell S J. 2006. Water in transition zone and lower mantle minerals. In: Jacobsen S D, Van Der Lee S, eds. Earth’s Deep Water Cycle, 168: 57–68Google Scholar
  12. Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S-and P-receiver function migration. Phys Earth Planet Inter, 173: 216–227CrossRefGoogle Scholar
  13. Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120: 96–115CrossRefGoogle Scholar
  14. Chen L. 2017. Layering of subcontinental lithospheric mantle. Chin Sci Bull, 62: 1030–1034CrossRefGoogle Scholar
  15. Chen L, Cheng C, Wei Z. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet Sci Lett, 286: 171–183CrossRefGoogle Scholar
  16. Chen L, Jiang M, Yang J, Wei Z, Liu C, Ling Y. 2014. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology, 42: 223–226CrossRefGoogle Scholar
  17. Chen L, Tao W, Zhao L, Zheng T. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 267: 56–68CrossRefGoogle Scholar
  18. Chen L, Zheng T, Xu W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312Google Scholar
  19. Cheng H D, Huang J S, Fu R S. 2016. Numerical simulation on convective thinning of the cratonic lithosphere. Chinese (in Chinese). J Geophys, 59: 1293–1308Google Scholar
  20. Cheng H D, Huang J S. 2017. Numerical simulation on the detachement of eclogitic lower crust (in Chinese). Sci Sin Terr, 47: 82–94CrossRefGoogle Scholar
  21. Chi J S, Lu F X. 1996. Kimberlites and Paleozoic Lithospheric Mantle Features of the North China Craton (in Chinese). Beijing: Sciences Press. 292Google Scholar
  22. Chu R, Helmberger D, Gurnis M. 2014. Upper mantle surprises derived from the recent Virginia earthquake waveform data. Earth Planet Sci Lett, 402: 167–175CrossRefGoogle Scholar
  23. Chu R, Leng W, Helmberger D V, Gurnis M. 2013. Hidden hotspot track beneath the eastern United States. Nat Geosci, 6: 963–966CrossRefGoogle Scholar
  24. Davies G F. 1994. Thermomechanical erosion of the lithosphere by mantle plumes. J Geophys Res, 99: 15709–15722CrossRefGoogle Scholar
  25. de Almeida F F M, Brito Neves B B, Dal Ré Carneiro C. 2000. The origin and evolution of the South American Platform. Earth-Sci Rev, 50: 77–111CrossRefGoogle Scholar
  26. de de Oliveira Cordeiro P F, Brod J A, Palmieri M, de Oliveira Cordeiro G, Barbosa E S R, Santos R V, Gaspar J C, Assis L C. 2011. The Catalão I niobium deposit, central Brazil: Resources, geology and pyrochlore chemistry. Ore Geol Rev, 41: 112–121CrossRefGoogle Scholar
  27. Deng J F, Mo X X, Zhao H L, Luo Z H, Du Y S. 1994. Lithosphere root/derooting and activation of the east China Continent (in Chinese with English abstract). Geoscience, 8: 349–356Google Scholar
  28. Deng J, Su S, Niu Y, Liu C, Zhao G, Zhao X, Zhou S, Wu Z. 2007. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 96: 22–35CrossRefGoogle Scholar
  29. Deng J F, Su S G, Mo X X, Zhao G C, Xiao Q H, Ji G Y, Qiu R Z, Zhao H L, Luo Z H, Wang Y, Liu C. 2004. The sequence of magmatic-tectonic events and orogenic processes of the Yanshan belt, North China. Acta Geol Sin-Engl Ed, 78: 260–266Google Scholar
  30. Dessai A G, Markwick A, Vaselli O, Downes H. 2004. Granulite and pyroxenite xenoliths from the Deccan Trap: Insight into the nature and composition of the lower lithosphere beneath Cratonic India. Lithos, 78: 263–290CrossRefGoogle Scholar
  31. Downes H, Macdonald R, Upton B G, Cox K G, Bodinier J, Mason P R, James D, Hill P G, Hearn B C. 2004. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming Craton. J Petrol, 45: 1631–1662CrossRefGoogle Scholar
  32. Duebendorfer E M, Houston R S. 1987. Proterozoic accretionary tectonics at the southern margin of the Archean Wyoming Craton. Geol Soc Am Bull, 98: 554–568CrossRefGoogle Scholar
  33. Dueker K, Yuan H, Zurek B. 2001. Thick-structured proterozoic lithosphere of the Rocky Mountain Region. Gsa Today, 11: 4–9CrossRefGoogle Scholar
  34. Faccenda M. 2014. Mid mantle seismic anisotropy around subduction zones. Phys Earth Planet Inter, 227: 1–19CrossRefGoogle Scholar
  35. Faccenda M, Gerya T V, Mancktelow N S, Moresi L. 2012. Fluid flow during slab unbending and dehydration: Implications for intermediatedepth seismicity, slab weakening and deep water recycling. Geochem Geophys Geosyst, 13: Q01010CrossRefGoogle Scholar
  36. Fan W M, Guo F, Wang Y J, Lin G, Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in Eastern China. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 733–746CrossRefGoogle Scholar
  37. Fan W M, Menzies M A. 1992. Destrcution of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China (in Chinese with English abstract). Geotect Metal, 16: 171–180Google Scholar
  38. Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the Archaean keel? J Petrol, 41: 933–950CrossRefGoogle Scholar
  39. Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 394–397CrossRefGoogle Scholar
  40. Frost C D, Frost B R, Chamberlain K R, Hulsebosch T P. 1998. The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Res, 89: 145–173CrossRefGoogle Scholar
  41. Fumagalli P, Zanchetta S, Poli S. 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: A high-pressure study. Contrib Mineral Petrol, 158: 723–737CrossRefGoogle Scholar
  42. Gao S, Jin Z M. 1998. Lower crustal delamination and evolution of continental crust (in Chinese with English abstract). Geol J China Univ, 16: 241–249Google Scholar
  43. Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198: 307–322CrossRefGoogle Scholar
  44. Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2003. Removal of lithospheric mantle in the North China Craton: Re-Os isotopic evidence for coupled crust-mantle growth (in Chinese with English abstract). Earth Sci Front, 10: 61–67Google Scholar
  45. Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897CrossRefGoogle Scholar
  46. Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53CrossRefGoogle Scholar
  47. Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and its bearing on destruction of the North China Craton (in Chinese with English abstract). Chin Sci Bull, 54: 3367–3378Google Scholar
  48. Gerya T V, Yuen D A. 2007. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys Earth Planet Inter, 163: 83–105CrossRefGoogle Scholar
  49. Gorczyk W, Mole D R, Barnes S J. 2017. Plume-lithosphere interaction at craton margins throughout Earth history. Tectonophysics, https://doi.org/10.1016/j.tecto.2017.04.002 Google Scholar
  50. Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett, 19: 37–53CrossRefGoogle Scholar
  51. Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451CrossRefGoogle Scholar
  52. Griffin W. 1992. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: Proton microprobe studies. In: Inter Symp on Cenozoic Volcanic Rocks and Deep-Seated Xenoliths in China and Its Environs. 65–66Google Scholar
  53. Griffin W, Andi Z, O’Reilly S, Ryan C. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. 107–126Google Scholar
  54. Griffin W L, Doyle B J, Ryan C G, Pearson N J, Suzanne Y O, Davies R, Kivi K, Van Achterbergh E, Natapov L M. 1999a. Layered mantle lithosphere in the Lac de Gras area, Slave craton: Composition, structure and origin. J Petrol, 40: 705–727CrossRefGoogle Scholar
  55. Griffin W L, Ryan C G, Kaminsky F V, O’Reilly S Y, Natapov L M, Win T T, Kinny P D, Ilupin I P. 1999b. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian Craton. Tectonophysics, 310: 1–35CrossRefGoogle Scholar
  56. Griffin W L, Kobussen A F, Babu E V S S K, O’Reilly S Y, Norris R, Sengupta P. 2009a. A translithospheric suture in the vanished 1Ga lithospheric root of South India: Evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos, 112: 1109–1119CrossRefGoogle Scholar
  57. Griffin W L, O’Reilly S Y, Afonso J C, Begg G C. 2009b. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J Petrol, 50: 1185–1204CrossRefGoogle Scholar
  58. Grove T L, Chatterjee N, Parman S W, Medard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89CrossRefGoogle Scholar
  59. Guo C L, Wu F Y, Yang J H, Lin J Q, Sun D Y. 2004. The extensional setting of the Early Cretaceous magmatism in eastern China: Example from the Yinmawanshan pluton in southern Liaodong Peninsula (in Chinese with English abstract). Acta Petrol Sin, 20: 1193–1204Google Scholar
  60. Hager B H, O’Connell R J. 1981. A simple global model of plate dynamics and mantle convection. J Geophys Res, 86: 4843–4867CrossRefGoogle Scholar
  61. He L. 2014. Numerical modeling of convective erosion and peridotite-melt interaction in big mantle wedge: Implications for the destruction of the North China Craton. J Geophys Res-Solid Earth, 119: 3662–3677CrossRefGoogle Scholar
  62. Heaman L M, Kjarsgaard B A, Creaser R A. 2003. The timing of kimberlite magmatism in North America: Implications for global kimberlite genesis and diamond exploration. Lithos, 71: 153–184CrossRefGoogle Scholar
  63. Hebert L B, Montési L G J. 2013. Hydration adjacent to a deeply subducting slab: The roles of nominally anhydrous minerals and migrating fluids. J Geophys Res-Solid Earth, 118: 5753–5770CrossRefGoogle Scholar
  64. Hirschmann M M. 2006. Water, Melting, and the deep earth H2O cycle. Annu Rev Earth Planet Sci, 34: 54629–54653CrossRefGoogle Scholar
  65. Hirth G, Kohlstedt D. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophys Monograph Series, 138: 83–105Google Scholar
  66. Houseman G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int, 128: 125–150CrossRefGoogle Scholar
  67. Hong D W, Wang T, Tong Y, Wang X X. 2003. Mesozoic granitoids from North China block and Qinling-Dabie-Sulu Orogenic belt and their deep dynamic process (in Chinese with English abstract). Earth Sci Front, 10: 231–256Google Scholar
  68. Houseman G A, McKenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res, 86: 6115–6132CrossRefGoogle Scholar
  69. Howarth G H, Barry P H, Pernet-Fisher J F, Baziotis I P, Pokhilenko N P, Pokhilenko L N, Bodnar R J, Taylor L A, Agashev A M. 2014. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos, 184-187: 209–224CrossRefGoogle Scholar
  70. Hu S, O’Sullivan P B, Raza A, Kohn B P. 2001. Thermal history and tectonic subsidence of the Bohai Basin, northern China: A Cenozoic rifted and local pull-apart basin. Phys Earth Planet Inter, 126: 221–235CrossRefGoogle Scholar
  71. Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305Google Scholar
  72. Huang J, Zhong S, Jeroen V H. 2003. Controls on sublithospheric smallscale convection. J Geophys Res, 108: 2405CrossRefGoogle Scholar
  73. Huangfu P P, Wang Y J, Fan W M, Li Z H, Wang Y M, Zhou Y Z. 2016a. Numerical modeling of flat subduction: Constraints from the Oceancontinent convergence velocity (in Chinese with English abstract). Geotect Metal, 40: 429–445Google Scholar
  74. Huangfu P, Wang Y, Cawood P A, Li Z H, Fan W, Gerya T V. 2016b. Thermo-mechanical controls of flat subduction: Insights from numericalmodeling. Gondwana Res, 40: 170–183CrossRefGoogle Scholar
  75. Iwamori H. 2004. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. Earth Planet Sci Lett, 227: 57–71CrossRefGoogle Scholar
  76. Iwamori H. 2007. Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem Geol, 239: 182–198CrossRefGoogle Scholar
  77. Jull M, Kelemen P B. 2001. On the conditions for lower crustal convective instability. J Geophys Res, 106: 6423–6446CrossRefGoogle Scholar
  78. Karmalkar N R, Duraiswami R A, Chalapathi Rao N V, Paul D K. 2009. Mantle-derived mafic-ultramafic xenoliths and the nature of Indian subcontinental lithosphere. J Geol Soc India, 73: 657–679CrossRefGoogle Scholar
  79. Kawamoto T. 2004. Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter, 143-144: 387–395CrossRefGoogle Scholar
  80. Kawamoto T, Hervig R L, Holloway J R. 1996. Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett, 142: 587–592CrossRefGoogle Scholar
  81. Kawamoto T, Holloway J R. 1997. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 igapascals. Science, 276: 240–243CrossRefGoogle Scholar
  82. Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett, 189: 19–29CrossRefGoogle Scholar
  83. Kiselev S, Vinnik L, Oreshin S, Gupta S, Rai S S, Singh A, Kumar M R, Mohan G. 2008. Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int, 173: 1106–1118CrossRefGoogle Scholar
  84. Komabayashi T, Omori S, Maruyama S. 2004. Petrogenetic grid in the system MgO-SiO2-H2O up to 30 GPa, 1600°C: Applications to hydrous peridotite subducting into the Earth’s deep interior. J Geophys Res, 109: B03206CrossRefGoogle Scholar
  85. Kumar A, Heaman L M, Manikyamba C. 2007. Mesoproterozoic kimberlites in south India: A possible link to 1.1 Ga global magmatism. Precambrian Res, 154: 192–204CrossRefGoogle Scholar
  86. Kumar P, Yuan X, Kumar M R, Kind R, Li X, Chadha R K. 2007. The rapid drift of the Indian tectonic plate. Nature, 449: 894–897CrossRefGoogle Scholar
  87. Kushiro I. 1970. Stability of amphibole and phlogopite in the upper mantle. Carnegie Inst Washington Yearb, 68: 245–247Google Scholar
  88. Kushiro I, Syono Y, Akimoto S I. 1968. Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res, 73: 6023–6029CrossRefGoogle Scholar
  89. Lee C T, Yin Q, Rudnick R L, Chesley J T, Jacobsen S B. 2000. Osmium isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science, 289: 1912–1916CrossRefGoogle Scholar
  90. Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90CrossRefGoogle Scholar
  91. Lei J, Zhao D. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397: 281–295CrossRefGoogle Scholar
  92. Li J W, Bi S J, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou M F, Zhao X F, Li Z K, Qiu H N. 2012. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet Sci Lett, 349-350: 26–37CrossRefGoogle Scholar
  93. Li S Z, Liu J Z, Zhao G C, Wu F Y, Han Z Z, Yang Z H. 2004. Key geochronology of Mesozoic deformation in the esstern block of the North China Craton and its constraints on regional tectonics: A case of Jiaodong and Liaodong Peninsula (in Chinese with English abstract). Acta Petrol Sin, 20: 633–646Google Scholar
  94. Li Z, Dong R G, Zheng J P. 2007. Mesozoic volacnic sedimentary configurations in north and south margins of the eastern North ChinaCraton: Implications for tectonic transition mechanism (in Chinese with English abstract). J Paleogeogr, 9: 227–242Google Scholar
  95. Li Z, Gerya T V. 2009. Polyphase formation and exhumation of high-to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J Geophys Res, 114: B09406Google Scholar
  96. Li Z H. 2014. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Sci China Earth Sci, 57: 47–69CrossRefGoogle Scholar
  97. Li Z H, Gerya T V, Burg J P. 2010. Influence of tectonic overpressure on PTpaths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. J Metamorph Geol, 28: 227–247CrossRefGoogle Scholar
  98. Li Z H, Liu M Q, Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Sci China Earth Sci, 58: 1251–1268CrossRefGoogle Scholar
  99. Li Z H, Liu M, Gerya T. 2016. Lithosphere delamination in continental collisional orogens: A systematic numerical study. J Geophys Res-Solid Earth, 121: 5186–5211CrossRefGoogle Scholar
  100. Liao J, Gerya T. 2014. Influence of lithospheric mantle stratification on craton extension: Insight from two-dimensional thermo-mechanical modeling. Tectonophysics, 631: 50–64CrossRefGoogle Scholar
  101. Litasov K, Ohtani E. 2003. Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa. Phys Chem Miner, 30: 147–156CrossRefGoogle Scholar
  102. Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339CrossRefGoogle Scholar
  103. Liu Y, Gao S, Lee C T A, Hu S, Liu X, Yuan H. 2005. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 234: 39–57CrossRefGoogle Scholar
  104. Liu M Q, Li Z H, Yang S H. 2017. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones. J Asian Earth Sci, 145: 16–36CrossRefGoogle Scholar
  105. Lu F X, Han Z G, Zheng J P, Ren Y X. 1991. Characteristics of the Paleozoic mantle-lithosphere in Fuxian, Liaoning Province (in Chinese with English abstract). Geol Sci Tech Info, 10(Suppl): 2–20Google Scholar
  106. Lu F X, Zhao L, Deng J F, Zheng J P. 1995. The discussion on the ages of kimberlitic magma activity in north China platform (in Chinese with English abstract). Acta Petrol Sin, 11: 365–374Google Scholar
  107. Lu F X, Zheng J P, Li W P, Chen M H, Cheng Z M. 2000. The main evolution pattern on Phanerozoic man tle in the eastern China: The “Mushroom Cloud” model (in Chinese). Earth Sci Front, 7: 97–107Google Scholar
  108. Lu F X, Zheng J P, Zhang R S Chen M H. 2005. Phanerozoic mantle secular evolution beneath the eastern North China Craton (in Chinese with English abstract). Earth Sci Front, 12: 61–67Google Scholar
  109. Lu X P, Wu F Y, Lin J Q, Sun D Y, Zhang Y B, Guo C L. 2004. Geochronological successions of the early precambrain granitic magmatism in southern Liaodong peninisula and its constraints on tectonic evolution of the North China Craton (in Chinese with English abstract). China J Geol, 39: 123–138Google Scholar
  110. Marotta A M, Fernandez M, Sabadini R. 1999. The onset of extension during lithospheric shortening: A two-dimensional thermomechanical model for lithospheric unrooting. Geophys J Int, 139: 98–114CrossRefGoogle Scholar
  111. Maruyama S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Isl Arc, 6: 91–120CrossRefGoogle Scholar
  112. Maruyama S, Isozaki Y, Kimura G, Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Isl Arc, 6: 121–142CrossRefGoogle Scholar
  113. McKenzie D, Jackson J, Priestley K. 2005. Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett, 233: 337–349CrossRefGoogle Scholar
  114. Meissner R, Mooney W. 1998. Weakness of the lower continental crust: A condition for delamination, uplift, and escape. Tectonophysics, 296: 47–60CrossRefGoogle Scholar
  115. Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369: 155–174CrossRefGoogle Scholar
  116. Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Spec Publ, 76: 71–81CrossRefGoogle Scholar
  117. Menzies M A, Xu Y. 1998. Geodynamics of the North China craton. In: Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantle dynamics and plate interactions in East Asia, 155–165Google Scholar
  118. Menzies M, Xu Y, Zhang H, Fan W. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96: 1–21CrossRefGoogle Scholar
  119. Millhollen G L, Irving A J, Wyllie P J. 1974. Melting Interval of Peridotite with 5.7 per Cent Water to 30 Kilobars. J Geol, 82: 575–587CrossRefGoogle Scholar
  120. Moore W B, Schubert G, Tackley P J. 1999. The role of rheology in lithospheric thinning by mantle plumes. Geophys Res Lett, 26: 1073–1076CrossRefGoogle Scholar
  121. Morency C, Doin M P, Dumoulin C. 2002. Convective destabilization of a thickened continental lithosphere. Earth Planet Sci Lett, 202: 303–320CrossRefGoogle Scholar
  122. Müller R D, Seton M, Zahirovic S, Williams S E, Matthews K J, Wright N M, Shephard G E, Maloney K T, Barnett-Moore N, Hosseinpour M, Bower D J, Cannon J. 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci, 44: 107–138CrossRefGoogle Scholar
  123. Mysen B R O, Boettcher A L. 1975. Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol, 16: 520–548Google Scholar
  124. Nakao A, Iwamori H, Nakakuki T. 2016. Effects of water transportation on subduction dynamics: Roles of viscosity and density reduction. Earth Planet Sci Lett, 454: 178–191CrossRefGoogle Scholar
  125. Nehru C, Reddy A. 1989. Ultramafic xenoliths from Vajrakarur kimberlites, India. Geol Soc Aust Spec Publ, 14: 745–758Google Scholar
  126. Niida K, Green D H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol, 135: 18–40CrossRefGoogle Scholar
  127. O’Brien H E, Irving A J, McCallum I S, Thirlwall M F. 1995. Strontium, neodymium, and lead isotopic evidence for the interaction of postsuhduction asthenospheric potassic mafic magmas of the Highwood Mountains, Montana, USA, with ancient Wyoming craton lithospheric mantle. Geochim Cosmochim Acta, 59: 4539–4556CrossRefGoogle Scholar
  128. Ohtani E. 2005. Water in the mantle. Elements, 1: 25–30CrossRefGoogle Scholar
  129. Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter, 143-144: 255–269CrossRefGoogle Scholar
  130. Okamoto K, Maruyama S. 1999. The high-pressure synthesis of lawsonite in the MORB+H2 O system. Am Miner, 84: 362–373CrossRefGoogle Scholar
  131. Olson P, Schubert G, Anderson C, Goldman P. 1988. Plume formation and lithosphere erosion: A comparison of laboratory and numerical experiments. J Geophys Res, 93: 15065–15084CrossRefGoogle Scholar
  132. Olson P. 1990. Hot spots, swells and mantle plumes. In: Ryan M P, ed. Magma Transport and Storage. Hoboken: Wiley. 33–51Google Scholar
  133. Omori S, Komabayashi T, Maruyama S. 2004. Dehydration and earthquakes in the subducting slab: Empirical link in intermediate and deep seismic zones. Phys Earth Planet Inter, 146: 297–311CrossRefGoogle Scholar
  134. Peacock S M. 1990. Fluid processes in subduction zones. Science, 248: 329–337CrossRefGoogle Scholar
  135. Peacock S M. 1993. The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 105: 684–694CrossRefGoogle Scholar
  136. Peslier A H, Woodland A B, Bell D R, Lazarov M. 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81CrossRefGoogle Scholar
  137. Poli S, Schmidt M W. 1995. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems. J Geophys Res, 100: 22299–22314CrossRefGoogle Scholar
  138. Qiao Y C, Guo Z Q, Shi Y L. 2012. Numerical simulation of a possible thinning mechanism of the North China Craton-Gravitional instability delamination induced by lower crust eclogite (in Chinese with English abstract). Chin J Geophys, 55: 4249–4256Google Scholar
  139. Qiao Y C, Guo Z Q, Shi Y L. 2013. Thermal convection thinning of the North China Craton: Numerical simulation. Sci China Earth Sci, 56: 773–782CrossRefGoogle Scholar
  140. Qiu N S, Li S P, Zeng J H. 2004. Thermal history and tectonic-thermal evolution of the Jiyang Depression in the Bohai Bay Basin, East China (in Chinese with English abstract). Acta Geol Sin, 78: 263–269Google Scholar
  141. Qiu N S, Su X G, Li Z Y, Liu Z Q, Li Z. 2006. The Cenozoic tectonothermal evolution of Jiyang depression, Bohai bay basin, East China (in Chinese with English abstract). Chin J Geophys, 49:1127–1135Google Scholar
  142. Rajesh H M, Mukhopadhyay J, Beukes N J, Gutzmer J, Belyanin G A, Armstrong R A. 2009. Evidence for an early Archaean granite from Bastar craton, India. J Geol Soc, 166: 193–196CrossRefGoogle Scholar
  143. Rao K, Rao K, Dhakate M, Nayak S. 2001. Petrology and mineralogy of mantle xenoliths of Wajrakarur and Narayanpet kimberlite fields, Andhra Pradesh, India. Geol Surv India Spec Publ, 58: 577–591Google Scholar
  144. Rao N V C, Wu F Y, Mitchell R H, Li Q L, Lehmann B. 2013. Mesoproterozoic U-Pb ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chem Geol, 353: 48–64CrossRefGoogle Scholar
  145. Read G, Grutter H, Winter S, Luckman N, Gaunt F, Thomsen F. 2004. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil. Lithos, 77: 803–818CrossRefGoogle Scholar
  146. Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hotspot tracks: Plume heads and tails. Science, 246: 103–107CrossRefGoogle Scholar
  147. Roy S, Rao R U M. 2000. Heat flow in the Indian shield. J Geophys Res, 105: 25587–25604CrossRefGoogle Scholar
  148. Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578CrossRefGoogle Scholar
  149. Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 33: 267–309CrossRefGoogle Scholar
  150. Rudnick R L, Gao S, Ling W L, Liu Y S, McDonough W F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77: 609–637CrossRefGoogle Scholar
  151. Sagong H, Kwon S T, Ree J H. 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24: TC5002CrossRefGoogle Scholar
  152. Schmeling H, Babeyko A Y, Enns A, Faccenna C, Funiciello F, Gerya T, Golabek G J, Grigull S, Kaus B J P, Morra G, Schmalholz S M, van Hunen J. 2008. A benchmark comparison of spontaneous subduction models—Towards a free surface. Phys Earth Planet Inter, 171: 198–223CrossRefGoogle Scholar
  153. Schmidt M, Poli S. 2014. Devolatilization during subduction. Treat Geochem, 4: 669–701CrossRefGoogle Scholar
  154. Schott B, Schmeling H. 1998. Delamination and detachment of a lithospheric root. Tectonophysics, 296: 225–247CrossRefGoogle Scholar
  155. Schubert G, Turcotte D L. 1972. One-dimensional model of shallow-mantle convection. J Geophys Res, 77: 945–951CrossRefGoogle Scholar
  156. Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets. Cambridge: Cambridge University PressGoogle Scholar
  157. Sengor A M C. 1999. Continental interiors and cratons: Any relation? Tectonophysics, 305: 1–42CrossRefGoogle Scholar
  158. Shalivahan, Bhattacharya B B, Rao N V C, Maurya V P. 2014. Thin lithosphere-asthenosphere boundary beneath Eastern Indian craton. Tectonophysics, 612-613: 128–133CrossRefGoogle Scholar
  159. Shapiro S S, Hager B H, Jordan T H. 1999. Stability and dynamics of the continental tectosphere. Lithos, 48: 115–133CrossRefGoogle Scholar
  160. Sleep N H. 2005. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 33: 369–393CrossRefGoogle Scholar
  161. Sonder L J, Jones C H. 1999. Western United States extension: How the west was widened. Annu Rev Earth Planet Sci, 27: 417–462CrossRefGoogle Scholar
  162. Suo Y H, Li S Z, Cao X Z Li X Y, Liu X, Cao H H. 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subdcution process of the oceanic plate (in Chinese with English abstract). Earth Sci Front, 24: 249–267Google Scholar
  163. Sun W, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542CrossRefGoogle Scholar
  164. Sun W, Ling M, Wang F, Ding X, Hu Y, Zhou J, Yang X. 2008. Pacific plate subduction and Mesozoic geological event in eastern China. Bull Mineral Petrol Geochem, 27: 218–225Google Scholar
  165. Syracuse E M, Keken P E V, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90CrossRefGoogle Scholar
  166. Thompson J B, Laird J, Thompson A B. 1982. Reactions in amphibolite, greenschist and blueschist. J Petrol, 23: 1–27CrossRefGoogle Scholar
  167. Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688CrossRefGoogle Scholar
  168. Van Hunen J, Berg A P V D, Vlaar N J. 2002. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics, 352: 317–333CrossRefGoogle Scholar
  169. Wang F, Zhou X H, Zhang L C, Ying J F, Zhang Y T, Wu F Y, Zhu R X. 2006. Late Mesozoic volcanism in the Great Xing’an Range (NEChina): Timing and implications for the dynamic setting of NE Asia. Earth Planet Sci Lett, 251: 179–198CrossRefGoogle Scholar
  170. Wang Y, Zhang F Q, Zhang D W, Miao L C, Li T S, Xie H Q, Meng Q R, Liu D Y. 2006. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance. Chin Sci Bull, 51: 1877–1883CrossRefGoogle Scholar
  171. Wang Z, Kusky T M, Capitanio F A. 2016a. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophys Res Lett, 43: 11,567–11,577Google Scholar
  172. Wang Z, Kusky T M, Fu J, Yuan Y, Zhu P. 2016b. Review of lithospheric destruction in the North China, North Atlantic, and Tanzanian Cratons. J Geol, 124: 699–721CrossRefGoogle Scholar
  173. Wang X C, Wilde S A, Li Q L, Yang Y N. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nat Commun, 6: 7700CrossRefGoogle Scholar
  174. Wang Y, Huang J, Zhong S. 2015. Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton. Geochem Geophys Geosyst, 16: 815–833CrossRefGoogle Scholar
  175. Wang Y, Huang J, Zhong S, Chen J. 2016. Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere. J Geophys Res-Solid Earth, 121: 3081–3098CrossRefGoogle Scholar
  176. Wen C G, Zhen Y Q, Diao Q, Chen Z, Song T, Zhang Y J, Qiao H. 2016. Lithosphere destruction and mantleplume genesis of eastern North China Craton (in Chinese with English abstract). Contributions to Geology and Mineral Resources Research, 31: 1–17Google Scholar
  177. Wernicke B. 1981. Low-angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen. Nature, 291: 645–648CrossRefGoogle Scholar
  178. Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci, 22: 108–125CrossRefGoogle Scholar
  179. Wilde S A, Zhou X, Nemchin A A, Sun M. 2003. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31: 817–820CrossRefGoogle Scholar
  180. Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293CrossRefGoogle Scholar
  181. Wu F Y, Sun D Y, Zhang G L, Ren X W. 2000. Deep geodynamics of Yanshan movement (in Chinese). Geol J China Univ, 6: 379–388Google Scholar
  182. Wu F, Walker R J, Ren X, Sun D, Zhou X. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol, 196: 107–129CrossRefGoogle Scholar
  183. Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119CrossRefGoogle Scholar
  184. Wu F Y, Yang J H, Wilde S A, Zhang X O. 2005b. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 221: 127–156CrossRefGoogle Scholar
  185. Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006. The chemicaltemporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 70: 5013–5034CrossRefGoogle Scholar
  186. Wu F Y, Han R H, Yang J H, Wilde S A, Zhai M G, Park S C. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chem Geol, 238: 232–248CrossRefGoogle Scholar
  187. Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithospheric thinning and destrcution of the North Chian Craton (in Chinese with English abstract). Acta Petrol, 24: 1145–1174Google Scholar
  188. Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890CrossRefGoogle Scholar
  189. Wu K, Ling M X, Sun W, Guo J, Zhang C C. 2017. Major transition of continental basalts in the Early Cretaceous: Implications for the destruction of the North China Craton. Chem Geol, 470: 93–106CrossRefGoogle Scholar
  190. Xia Q K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 115: B07207CrossRefGoogle Scholar
  191. Xia Q K, Hao Y T, Liu S C, Gu X Y, Feng M. 2013a. Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: Peridotite xenolith constraints. Gondwana Res, 23: 108–118CrossRefGoogle Scholar
  192. Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013b. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97CrossRefGoogle Scholar
  193. Xu Y. 1995. Lithosphere-asthenosphere interaction: A comparative study on Cenozoic and Mesozoic basalts around Bohai area. Geotect Metal, 19: 1–13Google Scholar
  194. Xu Y G. 1999. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning (in Chinese). Bull Mineral Petrol Geochem, 18: 1–5Google Scholar
  195. Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757CrossRefGoogle Scholar
  196. Xu Y G. 2002. Mantle plumes, large igneous provinces and their geological consequences (in Chinese). Earth Sci Front, 9: 341–353Google Scholar
  197. Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 96: 281–298CrossRefGoogle Scholar
  198. Xu Y G, Menzies M A, Thirlwall M F, Huang X L, Liu Y, Chen X M. 2003. “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta, 67: 487–505CrossRefGoogle Scholar
  199. Xu Y G, Huang X L, Ma J L, Wang Y B, Iizuka Y, Xu J F, Wang Q, Wu X Y. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 147: 750–767CrossRefGoogle Scholar
  200. Xu Y G, Blusztajn J, Ma J L, Suzuki K, Liu J F, Hart S R. 2008. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, 102: 25–42CrossRefGoogle Scholar
  201. Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 54: 3379–3396Google Scholar
  202. Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152CrossRefGoogle Scholar
  203. Yang J, Zhao L, Kaus B J P, Lu G, Wang K, Zhu R. 2017. Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton. Tectonophysics, doi: 10.1016/j. tecto.2017.04.009Google Scholar
  204. Yang S H, Li Z H, Gerya T, Xu Z Q, Shi Y L. 2017. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet. Tectonophysics, doi: 10.1016/j.tecto. 2017.07.018Google Scholar
  205. Yang J H, Wu F Y, Wilde S A, Belousova E, Griffin W L. 2008. Mesozoic decratonization of the North China block. Geology, 36: 467–470CrossRefGoogle Scholar
  206. Yang T, Leng W. 2014. Dynamics of hidden hotspot tracks beneath the continental lithosphere. Earth Planet Sci Lett, 401: 294–300CrossRefGoogle Scholar
  207. Yuan X C. 1996. The velocity structures of the Qinling lithosphere and its mushroom tectonic model (in Chinese). Sci China Ser-D Earth China, 26: 235–244Google Scholar
  208. Yuan X C. 2007. Mushroom stucture of the lithosphere mantle and its gnesis at depth: Revisited (in Chinese with English abstract). Geol China, 34: 737–758Google Scholar
  209. Yuan H, Dueker K, Stachnik J. 2010. Crustal structure and thickness along the Yellowstone hot spot track: Evidence for lower crustal outflow from beneath the eastern Snake River Plain. Geochem Geophys Geosyst, 11: Q03009CrossRefGoogle Scholar
  210. Yuen D A, Fleitout L. 1985. Thinning of the lithosphere by small-scale convective destabilization. Nature, 313: 125–128CrossRefGoogle Scholar
  211. Zhai M, Fan Q, Zhang H, Sui J, Shao J. 2007. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 96: 36–54CrossRefGoogle Scholar
  212. Zhai M G, Meng Q R, Liu J M, Hou Q L, Hu S B, Li Z, Zhang H F, Liu W, Shao J A, Zhu R X. 2004. Geological features of Mesozoic tectonic regime inversion in Eastern North China and implication for geodynamics (in Chinese with English abstract). Earth Sci Front, 3: 285–297Google Scholar
  213. Zhai M G, Fan Q C, Zhang H F, Sui J L. 2005. Lower crust processes during the lithosphere thinning in eastern China: Magma underplating, replacement and delamination (in Chinese with English abstract). Acta Petrol Sin, 22: 1509–1526Google Scholar
  214. Zhai M G, Peng P. 2007. Paleoproterozoic events in the North China Craton (in Chinese with English abstract). Acta Petrol Sin, 23: 2665–2682Google Scholar
  215. Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241–254CrossRefGoogle Scholar
  216. Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 67: 4373–4387CrossRefGoogle Scholar
  217. Zhang H, Ying J, Xu P, Ma Y. 2004. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: Implication for replacement process of lithospheric mantle. Chin Sci Bull, 49: 961–966CrossRefGoogle Scholar
  218. Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull, 54: 3417–3437Google Scholar
  219. Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326CrossRefGoogle Scholar
  220. Zhang J H, Gao S, Ge W C, Wu F Y, Yang J H, Wilde S A, Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction-induced delamination. Chem Geol, 276: 144–165CrossRefGoogle Scholar
  221. Zhang Q, Jin W J, Wang Y L, Li C D, Wang Y, Jia X Q. 2006a. A model of delamination of continental lower crust (in Chinese with English abstract). Acta Petrol Sin, 22: 265–276Google Scholar
  222. Zhang Q, Jin W J, Wang Y L, Li C D, Wang Y, JIa X Q. 2006b. Ocean lithosphere delamination and the lower crsut delamination: The different mechanism and geological implication: Comment on the delamination model of lower crust and litosphere mantle (in Chinese with English abstract. Acta Petrol Sin, 22: 2631–2638Google Scholar
  223. Zhang K J. 2002. Escape hypothesis for North and South China collision and tectonic evolution of the Qinling Orogen, eastern Asia. Eclogae Geol Helv, 95: 237–248Google Scholar
  224. Zhao G, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2.1–1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Sci Rev, 59: 125–162CrossRefGoogle Scholar
  225. Zhao G, Sun M, Wilde S A. 2003. Correlations between the eastern block of the North China Craton and the South Indian Block of the Indian shield: An Archaean to Palaeoproterozoic link. Precambrian Res, 122: 201–233CrossRefGoogle Scholar
  226. Zhao D, Lei J, Tang R. 2004. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin Sci Bull, 49: 1401–1408CrossRefGoogle Scholar
  227. Zhao Z F, Zheng Y F, Wei C S, Wu Y B. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophys Res Lett, 31: L22602CrossRefGoogle Scholar
  228. Zhao D, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res, 11: 120–131CrossRefGoogle Scholar
  229. Zhao D, Tian Y, Lei J, Liu L, Zheng S. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys Earth Planet Inter, 173: 197–206CrossRefGoogle Scholar
  230. Zheng J, O’Reilly S Y, Griffin W L, Lu F, Zhang M. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev, 40: 471–499CrossRefGoogle Scholar
  231. Zheng J P. 1999. Mesozoic-Cenozoic mantle replacement and lithospheric thinning beneath the Eastern China (in Chinese with English abstract). Wuhan: China Uni Geosci Press. 126Google Scholar
  232. Zheng J P, Lu F X. 1999. Mantle xenoliths fromkimberlites, Shandong and Liaoning: Paleozoic mantle character and its heterogene ity (in Chinese with English abstract). Acta Petrol Sin, 15: 65-74Google Scholar
  233. Zheng J P, Lu F X, O’Reilly S, Griffin W, Zhang M. 1999. Comparison between Palaeozoic and Cenozoic Lithospheric Mantle in the Eastern Part of the North China Block-with a Discussion of Mantle Evolution. Acta Geol Sin, 73: 47–56CrossRefGoogle Scholar
  234. Zheng J, O’Reilly S Y, Griffin W L, Lu F, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66CrossRefGoogle Scholar
  235. Zheng J, Griffin W L, O’Reilly S Y, Lu F, Wang C, Zhang M, Wang F, Li H. 2004. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology, 32: 229–232CrossRefGoogle Scholar
  236. Zheng J, Griffin W L, O’Reilly S Y, Liou J G, Zhang R Y, Lu F. 2005a. Late mesozoic-eocene mantle replacement beneath the eastern North China craton: Evidence from the Paleozoic and Cenozoic peridotite xenoliths. Int Geol Rev, 47: 457–472CrossRefGoogle Scholar
  237. Zheng J, Sun M, Zhou M F, Robinson P. 2005b. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 69: 3401–3418CrossRefGoogle Scholar
  238. Zheng J P, Lu F X, Griffin W, Yu C M, Zhang R S, Yuan X P, Wu X L. 2006a. Lithospheric thinning accompanying mantle lateral spreading, erosion and replacement beneath the eastern part of North China: Evidence from peridotites. Earth Sci Front, 13: 76–85Google Scholar
  239. Zheng J, Griffin W L, O’Reilly S Y, Yang J, Li T, Zhang M, Zhang R Y, Liou J G. 2006b. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 47: 2233–2256CrossRefGoogle Scholar
  240. Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225CrossRefGoogle Scholar
  241. Zheng Y F, Wu FY. 2009. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 54: 3347–3353Google Scholar
  242. Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682CrossRefGoogle Scholar
  243. Zheng Y F, Xu Z, Zhao Z F, Dai L Q. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385CrossRefGoogle Scholar
  244. Zhou X, Sun M, Zhang G, Chen S. 2002. Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62: 111–124CrossRefGoogle Scholar
  245. Zhou X H. 2006. Major transformation of subcontinental lithosphere beneath eastern China in the Cenozoic-Mesozoic: Review and prospect (in Chinese with English abstract). Earth Sci Front, 13: 50–64Google Scholar
  246. Zhu G, Wang D X, Liu G S, Niu M L, Song C Z. 2004. Evolution of the Tan-Lu fault zone and its responses to plate movements in weat pacific basin (in Chinese with English abstract). Chin J Geology, 39: 36–49Google Scholar
  247. Zhu R X, Zheng T Y. 2009. Destruction geodynamics of North China Craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 54: 3354–3366Google Scholar
  248. Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797CrossRefGoogle Scholar
  249. Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587CrossRefGoogle Scholar
  250. Zorin Y A. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306: 33–56CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Computational Geodynamics, College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Institute of GeologyChinese Academy of Geological SciencesBeijingChina

Personalised recommendations