Science China Earth Sciences

, Volume 61, Issue 4, pp 353–385 | Cite as

Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere

Review
  • 100 Downloads

Abstract

The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.

Keywords

Cratonic destruction Mafic magmas IAB-like series OIB-like series Lithospheric thinning Slab subduction 

Notes

Acknowledgements

Thanks are due to two anonymous reviewers for their comments that helped the improvement of the presentation. This work was supported by the National Key Basic Research Program of China (Grant No. 2015CB856100) and the National Natural Science Foundation of China (Grant No. 41690620).

References

  1. An M, Shi Y. 2006. Lithospheric thickness of the Chinese continent. Phys Earth Planet Inter, 159: 257–266Google Scholar
  2. Arcay D, Lallemand S, Doin M P. 2008. Back-arc strain in subduction zones: Statistical observations versus numerical modeling. Geochem Geophys Geosyst, 9: Q05015Google Scholar
  3. Atwater T, Severinghaus J. 1989. Tectonic maps of the northeast Pacific. In: Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific Ocean and Hawaii, Vol. N: The Geology of North America. Geological Society of America. 15–20Google Scholar
  4. Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol, 132: 390–404Google Scholar
  5. Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44Google Scholar
  6. Brey G P, Girnis A V, Bulatov V K, Höfer H E, Gerdes A, Woodland A B. 2015. Reduced sediment melting at 7.5–12GPa: Phase relations, geochemical signals and diamond nucleation. Contrib Mineral Petrol, 170: 1–25Google Scholar
  7. Cai Y C, Fan H R, Santosh M, Liu X, Hu F F, Yang K F, Lan T G, Yang Y H, Liu Y. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain. Gondwana Res, 24: 601–621Google Scholar
  8. Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001Google Scholar
  9. Chen L, Zheng T, Xu W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312Google Scholar
  10. Chen L, Tao W, Zhao L, Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 267: 56–68Google Scholar
  11. Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys Earth Planet Inter, 173: 216–227Google Scholar
  12. Chen L, Cheng C, Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet Sci Lett, 286: 171–183Google Scholar
  13. Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120: 96–115Google Scholar
  14. Chu Z Y, Wu F Y, Walker R J, Rudnick R L, Pitcher L, Puchtel I S, Yang Y H, Wilde S A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol, 50: 1857–1898Google Scholar
  15. Currie C A, Wang K, Hyndman R D, He J. 2004. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc. Earth Planet Sci Lett, 223: 35–48Google Scholar
  16. Currie C A, Hyndman R D. 2006. The thermal structure of subduction zone back arcs. J Geophys Res, 111: B08404Google Scholar
  17. Currie C A, Beaumont C, Huismans R S. 2007. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology, 35: 1111–1114Google Scholar
  18. Currie C A, Huismans R S, Beaumont C. 2008. Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet Sci Lett, 269: 436–447Google Scholar
  19. Coogan L A. 2014. The lower oceanic crust. Treatise Geochem, 4: 497–541Google Scholar
  20. Dai L Q, Zhao Z F, Zheng Y F, Li Q, Yang Y, Dai M. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 229–244Google Scholar
  21. Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic- ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99–121Google Scholar
  22. Dai L Q, Zhao Z F, Zheng Y F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762–3779Google Scholar
  23. Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2015. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochem Geophys Geosyst, 16: 659–680Google Scholar
  24. Dai L Q, Zheng Y F, Zhao Z F. 2016. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos, 240-243: 327–336Google Scholar
  25. Dai F Q, Zhao Z F, Zheng Y F. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen. Chem Geol, 454: 25–43Google Scholar
  26. Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3GPa. Contrib Mineral Petrol, 149: 288–305Google Scholar
  27. Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665Google Scholar
  28. Demouchy S, Deloule E, Frost D J, Keppler H. 2005. Pressure and temperature- dependence of water solubility in Fe-free wadsleyite. Am Miner, 90: 1084–1091Google Scholar
  29. DePaolo D J, Daley E E. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol, 169: 157–185Google Scholar
  30. Duan C, Mao J, Xie G, Chen Z, Ma G, Wang Z, Chen T, Li W. 2016. Zircon U-Pb geochronological and Hf isotope study on Tiaojishan volcanic Formation, Mujicun, North Taihang Mountain and implications for regional metallogeny and magmatism (in Chinese with English abstract). Acta Geol Sin, 90: 250–266Google Scholar
  31. Elsasser W M. 1971. Sea-floor spreading as thermal convection. J Geophys Res, 76: 1101–1112Google Scholar
  32. Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific Basin. Geol Soc Am Spec Paper, 206: 1–60Google Scholar
  33. English J M, Johnston S T, Wang K. 2003. Thermal modelling of the Laramide orogeny: Testing the flat-slab subduction hypothesis. Earth Planet Sci Lett, 214: 619–632Google Scholar
  34. Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the archaean keel? J Petrol, 41: 933–950Google Scholar
  35. Fan W M, Guo F, Wang Y J, Lin G, Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in Eastern China. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 733–746Google Scholar
  36. Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 503–510Google Scholar
  37. Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200Google Scholar
  38. Fukao Y, Obayashi M, Inoue H, Nenbai M. 1992. Subducting slabs stagnant in the mantle transition zone. J Geophys Res, 97: 4809–4822Google Scholar
  39. Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Rev Geophys, 39: 291–323Google Scholar
  40. Fukao Y, Obayashi M, Nakakuki T. 2009. Stagnant slab: A review. Annu Rev Earth Planet Sci, 37: 19–46Google Scholar
  41. Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re- Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198: 307–322Google Scholar
  42. Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897Google Scholar
  43. Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53Google Scholar
  44. Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Sci Bull, 54: 3367–3378Google Scholar
  45. Gerbode C, Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9GPa and genesis of HIMU ocean island basalts. J Petrol, 51: 2067–2088Google Scholar
  46. Gerya T V, Yuen D A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett, 212: 47–62Google Scholar
  47. Gerya T V, Yuen D A, Sevre E O D. 2004. Dynamical causes for incipient magma chambers above slabs. Geology, 32: 89–92Google Scholar
  48. Gerya T, Stöckhert B. 2006. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci (Geol Rundsch), 95: 250–274Google Scholar
  49. Gerya T V, Connolly J A D, Yuen D A, Gorczyk W, Capel A M. 2006. Seismic implications of mantle wedge plumes. Phys Earth Planet Inter, 156: 59–74Google Scholar
  50. Gerya T V, Connolly J A D, Yuen D A. 2008a. Why is terrestrial subduction one-sided? Geology, 36: 43–46Google Scholar
  51. Gerya T V, Perchuk L L, Burg J P. 2008b. Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crustmantle associations in collision belts. Lithos, 103: 236–256Google Scholar
  52. Gerya T V, Meilick F I. 2011. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. J Metamorph Geol, 29: 7–31Google Scholar
  53. Gorczyk W, Gerya T V, Connolly J A D, Yuen D A. 2007a. Growth and mixing dynamics of mantle wedge plumes. Geology, 35: 587–590Google Scholar
  54. Gorczyk W, Guillot S, Gerya T V, Hattori K. 2007b. Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles. Geophys Res Lett, 34: L21309Google Scholar
  55. Gorczyk W, Willner A P, Gerya T V, Connolly J A D, Burg J P. 2007c. Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling. Phys Earth Planet Inter, 163: 209–232Google Scholar
  56. Grassi D, Schmidt M W. 2011. The Melting of Carbonated Pelites from 70 to 700 km Depth. J Petrol, 52: 765–789Google Scholar
  57. Green T H, Adam J. 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0GPa, 650–700°C. Eur J Mineral, 15: 815–830Google Scholar
  58. Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere–asthenosphere boundary. Nature, 467: 448–451Google Scholar
  59. Griffin W L, Zhang A D, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Geodyn Ser, 27: 107–126Google Scholar
  60. Griffin W L, Begg G C, O’Reilly S Y. 2013. Continental-root control on the genesis of magmatic ore deposits. Nat Geosci, 6: 905–910Google Scholar
  61. Grove T L, Till C B, Krawczynski M J. 2012. The Role of H2O in Subduction Zone Magmatism. Annu Rev Earth Planet Sci, 40: 413–439Google Scholar
  62. Guo F, Fan W, Wang Y, Zhang M. 2004. Origin of early Cretaceous calcalkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78: 291–305Google Scholar
  63. Guo J, Chen F, Zhang X, Sibel W, Zhai M. 2005. Evolution of syn- to postcollisional magmatism from north Sulu UHP belt, eastern China: Zircon U-Pb geochronlogy (in Chinese with English abstract). Acta Petrol Sin, 21: 1281–1301Google Scholar
  64. Guo X, Encarnacion J, Xu X, Deino A, Li Z, Tian X. 2012. Collision and rotation of the South China block and their role in the formation and exhumation of ultrahigh pressure rocks in the Dabie Shan orogen. Terra Nova, 24: 339–350Google Scholar
  65. Guo J T, Guo F, Wang C Y, Li C W. 2013. Crustal recycling processes in generating the early Cretaceous Fangcheng basalts, North China Craton: New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170-171: 1–16Google Scholar
  66. Guo F, Fan W, Li C, Wang C Y, Li H, Zhao L, Li J. 2014. Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chem Geol, 381: 243–258Google Scholar
  67. Guo P Y, Niu Y L, Ye L, Liu J, Sun P, Cui H, Zhang Y, Gao J, Su L, Zhao J, Feng Y. 2014. Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts. Lithos, 202-203: 37–54Google Scholar
  68. Gutscher M A, Maury R, Eissen J P, Bourdon E. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535–538Google Scholar
  69. Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753–757Google Scholar
  70. Hart S R, Blusztajn J, Dick H J B, Meyer P S, Muehlenbachs K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta, 63: 4059–4080Google Scholar
  71. Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436Google Scholar
  72. Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33–45Google Scholar
  73. Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314Google Scholar
  74. Hong L B, Zhang Y H, Xu Y G, Ren Z Y, Yan W, Ma Q, Ma L, Xie W. 2017. Hydrous orthopyroxene-rich pyroxenite source of the Xinkailing high magnesium andesites, Western Liaoning: Implications for the subduction-modified lithospheric mantle and the destruction mechanism of the North China Craton. Lithos, 282-283: 10–22Google Scholar
  75. Houseman G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int, 128: 125–150Google Scholar
  76. Huang X L, Xu Y G, Liu D Y. 2004. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China. Geochim Cosmochim Acta, 68: 127–149Google Scholar
  77. Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305Google Scholar
  78. Huang H, Gao S, Hu Z C, Liu X M, Yuan H L. 2007. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning: Implication for delamination of newly formed lower crust. Sci China Ser D-Earth Sci, 50: 1773–1786Google Scholar
  79. Huang J, Zhao D. 2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions. Phys Earth Planet Inter, 173: 330–348Google Scholar
  80. Huang X L, Zhong J W, Xu Y G. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochim Cosmochim Acta, 96: 193–214Google Scholar
  81. Huang J, Li S G, Xiao Y, Ke S, Li W Y, Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 164: 298–317Google Scholar
  82. Huang J, Xiao Y. 2016. Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China. Int Geol Rev, 58: 1350–1362Google Scholar
  83. Huang S C, Zheng Y F. 2017. Mantle geochemistry: Insights from ocean island basalts. Sci China Earth Sci, 60: 1976–2000Google Scholar
  84. Ichiki M, Baba K, Obayashi M, Utada H. 2006. Water content and geotherm in the upper mantle above the stagnant slab: Interpretation of electrical conductivity and seismic P-wave velocity models. Phys Earth Planet Inter, 155: 1–15Google Scholar
  85. Ivanov A V. 2007. Evaluation of different models for the origin of the Siberian traps. Geol Soc Am Spec Paper, 430: 669–691Google Scholar
  86. Iwamori H. 1992. Degree of melting and source composition of Cenozoic basalts in southwest Japan: Evidence for mantle upwelling by flux melting. J Geophys Res, 97: 10983–10995Google Scholar
  87. Iwamori H. 2000. Deep subduction of H2O and deflection of volcanic chain towards backarc near triple junction due to lower temperature. Earth Planet Sci Lett, 181: 41–46Google Scholar
  88. Iwamori H. 2007. Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem Geol, 239: 182–198Google Scholar
  89. Jiang Y H, Jiang S, Zhao K, Ni P, Ling H, Liu D. 2005. SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China. Chin Sci Bull, 50: 2612–2620Google Scholar
  90. Jordan T H. 1975. The continental tectosphere. Rev Geophys Space Phys, 13: 1–12Google Scholar
  91. Jordan T H. 1981. Continents as a chemical boundary layer. Phil Trans Roy Soc, A301: 359–373Google Scholar
  92. Jull M, Kelemen P B. 2001. On the conditions for lower crustal convective instability. J Geophys Res, 106: 6423–6446Google Scholar
  93. Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem, 4: 749–806Google Scholar
  94. Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett, 189: 19–29Google Scholar
  95. Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727Google Scholar
  96. Kiminami K, Imaoka T. 2013. Spatiotemporal variations of Jurassic-Cretaceous magmatism in eastern Asia (Tan-Lu Fault to SW Japan): Evidence for flat-slab subduction and slab rollback. Terra Nova, 25: 414–422Google Scholar
  97. Kimura J I, Kent A J R, Rowe M C, Katakuse M, Nakano F, Hacker B R, van Keken P E, Kawabata H, Stern R J. 2010. Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosyst, 11: Q10011Google Scholar
  98. Kiseeva E S, Yaxley G M, Hermann J, Litasov K D, Rosenthal A, Kamenetsky V S. 2012. An Experimental Study of Carbonated Eclogite at 3.5–5.5GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. J Petrol, 53: 727–759Google Scholar
  99. Kuang Y S, Wei X, Hong L B, Ma J L, Pang C J, Zhong Y T, Zhao J X, Xu Y G. 2012. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the late Cretaceous–early Cenozoic. Lithos, 154: 68–82Google Scholar
  100. Kuritani T, Ohtani E, Kimura J I. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci, 4: 713–716Google Scholar
  101. Kuritani T, Kimura J I, Ohtani E, Miyamoto H, Furuyama K. 2013. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos, 156-159: 1–12Google Scholar
  102. Kukačka M, Matyska C. 2008. Numerical model of heat flow in back-arc regions. Earth Planet Sci Lett, 276: 243–252Google Scholar
  103. Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res, 20: 26–35Google Scholar
  104. Kusky T M, Windley B F, Wang L, Wang Z, Li X, Zhu P. 2014. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208–221Google Scholar
  105. Kusky T M, Polat A, Windley B F, Burke K C, Dewey J F, Kidd W S F, Maruyama S, Wang J P, Deng H, Wang Z S, Wang C, Fu D, Li X W, Peng H T. 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents. Earth-Sci Rev, 162: 387–432Google Scholar
  106. Krystopowicz N J, Currie C A. 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet Sci Lett, 361: 195–207Google Scholar
  107. Lallemand S. 2016. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin- Mariana subduction. Prog Earth Planet Sci, 3: 15Google Scholar
  108. Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms. 2nd ed. Cambridge: Cambridge University Press Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, 73: 3661–3697Google Scholar
  109. Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90Google Scholar
  110. Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397: 281–295Google Scholar
  111. Li W, Li X, Lu F, Zhou Y, Zhang D. 2002. Geological characteristics and its setting for volcanic rocks of early Cretaceous Yixian Formation in western Liaoning province, eastern China (in Chinese with English abstract). Acta Petrol Sin, 18: 193–204Google Scholar
  112. Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182Google Scholar
  113. Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308Google Scholar
  114. Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet Sci Lett, 385: 137–144Google Scholar
  115. Li H Y, Huang X L, Guo H. 2014. Geochemistry of Cenozoic basalts from the Bohai Bay Basin: Implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton. Lithos, 196-197: 54–66Google Scholar
  116. Li Y Q, Ma C Q, Robinson P T, Zhou Q, Liu M L. 2015. Recycling of oceanic crust from a stagnant slab in the mantle transition zone: Evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos, 230: 146–165Google Scholar
  117. Li H Y, Xu Y G, Ryan J G, Huang X L, Ren Z Y, Guo H, Ning Z G. 2016a. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochim Cosmochim Acta, 178: 1–19Google Scholar
  118. Li H Y, Zhou Z, Ryan J G, Wei G J, Xu Y G. 2016b. Boron isotopes reveal multiple metasomatic events in the mantle beneath the eastern North China Craton. Geochim Cosmochim Acta, 194: 77–90Google Scholar
  119. Li Y Q, Ma C Q, Robinson P T. 2016. Petrology and geochemistry of Cenozoic intra-plate basalts in east-central China: Constraints on recycling of an oceanic slab in the source region. Lithos, 262: 27–43Google Scholar
  120. Li H Y, Xu Y G, Ryan J G, Whattam S A. 2017. Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: Linking geochemical and geophysical observations. J Geophys Res Solid Earth, 122: 224–246Google Scholar
  121. Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Nat Sci Rev, 4: 111–120Google Scholar
  122. Liu S, Zou H, Hu R, Zhao J, Feng C. 2006. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications. Geochem J, 40: 181–195Google Scholar
  123. Liu S, Hu R, Gao S, Feng C, Qi Y, Wang T, Feng G, Coulson I M. 2008. UPb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos, 106: 365–379Google Scholar
  124. Liu Y S, Gao S, Kelemen P B, Xu W. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 72: 2349–2376Google Scholar
  125. Liu S, Hu R, Gao S, Feng C, Yu B, Feng G, Qi Y, Wang T, Coulson I M. 2009. Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust. Lithos, 113: 621–639Google Scholar
  126. Liu S, Hu R, Gao S, Feng C, Feng G, Qi Y, Coulson I M, Yang Y, Yang C, Tang L. 2012. Geochemical and isotopic constraints on the age and origin of mafic dikes from eastern Shandong Province, eastern North China Craton. Int Geol Rev, 54: 1389–1400Google Scholar
  127. Liu J L, Shen L, Ji M, Guan H, Zhang Z, Zhao Z. 2013. The Liaonan/ Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China Craton. Tectonics, 32: 1121–1141Google Scholar
  128. Liu S, Currie C A. 2016. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666: 33–47Google Scholar
  129. Liu X, Zhao D, Li S, Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet Sci Lett, 464: 166–174Google Scholar
  130. Ma L, Jiang S Y, Hofmann A W, Dai B Z, Hou M L, Zhao K D, Chen L H, Li J W, Jiang Y H. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochim Cosmochim Acta, 124: 250–271Google Scholar
  131. Ma L, Jiang S Y, Hofmann A W, Xu Y G, Dai B Z, Hou M L. 2016. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem Geol, 432: 1–15Google Scholar
  132. Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97–108Google Scholar
  133. Mallik A, Dasgupta R, Tsuno K, Nelson J. 2016. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. Geochim Cosmochim Acta, 195: 226–243Google Scholar
  134. Martin L A J, Wood B J, Turner S, Rushmer T. 2011. Experimental measurements of trace element partitioning between lawsonite, zoisite and fluid and their implication for the composition of arc magmas. J Petrol, 52: 1049–1075Google Scholar
  135. Maruyama S, Hasegawa A, Santosh M, Kogiso T, Omori S, Nakamura H, Kawai K, Zhao D. 2009. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Res, 16: 414–430Google Scholar
  136. Matsukage K N, Jing Z, Karato S I. 2005. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature, 438: 488–491Google Scholar
  137. McKenzie D P, Parker R L. 1967. The North Pacific: An example of tectonics on a sphere. Nature, 216: 1276–1280Google Scholar
  138. Meng F, Xue H, Li T, Yang H, Liu F. 2005. Enriched characteristics of Late Mesozoic mantle under the Sulu orogenic belt: Geochemical evidence from gabbro in Rushan (in Chinese with English abstract). Acta Petrol Sin, 21: 1583–1592Google Scholar
  139. Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Special Publ, 76: 71–81Google Scholar
  140. Menzies M, Xu Y, Zhang H, Fan W. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96: 1–21Google Scholar
  141. Miyashiro A. 1986. Hot regions and the origin of marginal basins in the western Pacific. Tectonophysics, 122: 195–216Google Scholar
  142. Morlidge M, Pawley A, Droop G. 2006. Double carbonate breakdown reactions at high pressures: An experimental study in the system CaOMgO- FeO-MnO-CO2. Contrib Mineral Petrol, 152: 365–373Google Scholar
  143. Molnar P, Houseman G A, Conrad C P. 1998. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: Effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int, 133: 568–584Google Scholar
  144. Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982Google Scholar
  145. Müller R D, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357–1362Google Scholar
  146. Nakanishi M, Tamaki K, Kobayashi K. 1992. A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications. Geophys Res Lett, 19: 693–696Google Scholar
  147. Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta, 49: 2309–2322Google Scholar
  148. Nikolaeva K, Gerya T V, Connolly J A D. 2008. Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys Earth Planet Inter, 171: 336–356Google Scholar
  149. Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China. Geol J China Univ, 11: 9–46Google Scholar
  150. Nohda S, Tatsumi Y, Otofuji Y, Matsuda T, Ishizaka K. 1988. Asthenospheric injection and back-arc opening: Isotopic evidence from Northeast Japan. Chem Geol, 68: 317–327Google Scholar
  151. O’Connor J M, Steinberger B, Regelous M, Koppers A A P, Wijbrans J R, Haase K M, Stoffers P, Jokat W, Garbe-Schönberg D. 2013. Constraints on past plate and mantle motion from new ages for the Hawaiian- Emperor Seamount Chain. Geochem Geophys Geosyst, 14: 4564–4584Google Scholar
  152. Ohtani E, Mizobata H, Yurimoto H. 2000. Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3- H2O at pressures up to 27GPa. Phys Chem Miner, 27: 533–544Google Scholar
  153. Ohtani E, Litasov K D, Hosoya T, Kubo T, Kondo T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter, 143-144: 255–269Google Scholar
  154. Ohtani E, Zhao D. 2009. The role of water in the deep upper mantle and transition zone: Dehydration of stagnant slabs and its effects on the big mantle wedge. Rus Geol Geophys, 50: 1073–1078Google Scholar
  155. Okamura S, Arculus R J, Martynov Y A. 2005. Cenozoic magmatism of the north-eastern Eurasian margin: The role of lithosphere versus asthenosphere. J Petrol, 46: 221–253Google Scholar
  156. O’Reilly S Y, Griffin W L, Djomani Y H P, Morgan P. 2001. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 11: 4–10Google Scholar
  157. Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224Google Scholar
  158. Pei F, Xu W, Wang Q, Wang D, Lin J. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China: Constraints on the nature of Mesozoic lithospheric mantle (in Chinese with English abstract). Geol J China Univ, 10: 88–97Google Scholar
  159. Peslier A H, Woodland A B, Bell D R, Lazarov M. 2009. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81Google Scholar
  160. Pilet S, Baker M B, Muntener O, Stolper E M. 2011. Monte carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol, 52: 1415–1442Google Scholar
  161. Plank T. 2014. The chemical composition of subducting sediments. Treatise Geochem, 4: 607–629Google Scholar
  162. Platt J P, England P C. 1994. Convective removal of lithosphere beneath mountain belts: Thermal and mechanical consequences. Am J Sci, 294: 307–336Google Scholar
  163. Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235Google Scholar
  164. Princivalle F, De Min A, Lenaz D, Scarbolo M, Zanetti A. 2014. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188: 3–14Google Scholar
  165. Prodehl C, Mooney W D. 2012. Exploring the Earth’s crust—History and results of controlled-source seismology. Geol Soc Am Mem, 208: 1–764Google Scholar
  166. Qian Q, Hermann J. 2013. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195–1224Google Scholar
  167. Qiao Y C, Guo Z Q, Shi Y L. 2013. Thermal convection thinning of the North China Craton: Numerical simulation. Sci China Earth Sci, 56: 773–782Google Scholar
  168. Ramos V A, Folguera A. 2009. Andean flat-slab subduction through time. Geol Soc Spec Publ, 327: 31–54Google Scholar
  169. Richard G, Bercovici D, Karato S I. 2006. Slab dehydration in the Earth’s mantle transition zone. Earth Planet Sci Lett, 251: 156–167Google Scholar
  170. Richard G C, Iwamori H. 2010. Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Phys Earth Planet Inter, 183: 280–287Google Scholar
  171. Ringwood A E. 1990. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol, 82: 187–207Google Scholar
  172. Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578Google Scholar
  173. Rudnick R L, Gao S. 2014. Composition of the continental crust. Treatise Geochem, 4: 1–51Google Scholar
  174. Sakamaki T, Suzuki A, Ohtani E. 2006. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature, 439: 192–194Google Scholar
  175. Sakuyama T, Tian W, Kimura J I, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H, Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chem Geol, 359: 32–48Google Scholar
  176. Sakuyama T, Nagaoka S, Miyazaki T, Chang Q, Takahashi T, Hirahara Y, Senda R, Itaya T, Kimura J I, Ozawa K. 2014. Melting of the uppermost metasomatized asthenosphere triggered by fluid fluxing from ancient subducted sediment: Constraints from the quaternary basalt lavas at Chugaryeong Volcano, Korea. J Petrol, 55: 499–528Google Scholar
  177. Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05B07Google Scholar
  178. Sato K, Katsura T. 2001. Experimental investigation on dolomite dissociation into aragonite+magnesite up to 8.5GPa. Earth Planet Sci Lett, 184: 529–534Google Scholar
  179. Schmid C, Goes S, van der Lee S, Giardini D. 2002. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet Sci Lett, 204: 17–32Google Scholar
  180. Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84Google Scholar
  181. Scire A, Zandt G, Beck S, Long M, Wagner L, Minaya E, Tavera H. 2016. Imaging the transition from flat to normal subduction: Variations in the structure of the Nazca slab and upper mantle under southern Peru and northwestern Bolivia. Geophys J Int, 204: 457–479Google Scholar
  182. Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Sci Rev, 113: 212–270Google Scholar
  183. Sizova E, Gerya T, Brown M, Perchuk L L. 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116: 209–229Google Scholar
  184. Shen Z, Huo Z, Yu F, Chen Z, Li Q, Ma G, Ge F, Wang Z. 2015. SHRIMP zircon U-Pb ages and Hf isotopes in the intermediate-acidic rocks of Wanganzhen complex in the northern part of Taihang Mountains and their geological implications (in Chinese with English abstract). Acta Petrol Sin, 31: 1409–1420Google Scholar
  185. Sleep N H. 2005. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 33: 369–393Google Scholar
  186. Spandler C, Yaxley G, Green D H, Rosenthal A. 2008. Phase Relations and Melting of Anhydrous K-bearing Eclogite from 1200 to 1600 °C and 3 to 5GPa. J Petrol, 49: 771–795Google Scholar
  187. Spandler C, Yaxley G, Green D H, Scott D. 2010. Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol, 160: 569–589Google Scholar
  188. Staudigel H, Plank T, White B, Schmincke H U. 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic Crust: DSDP sites 417 and 418. Geophys Monogr, 96: 19–38Google Scholar
  189. Stern R J. 2004. Subduction initiation: spontaneous and induced. Earth Planet Sci Lett, 226: 275–292Google Scholar
  190. Stracke A, Bizimis M, Salters V J M. 2003. Recycling oceanic crust: Quantitative constraints. Geochem Geophys Geosyst, 4: 8003Google Scholar
  191. Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Spec Publ, 42: 313–345Google Scholar
  192. Sun W D, Hu Y H, Kamenetsky V S, Eggins S M, Chen M, Arculus R J. 2008. Constancy of Nb/U in the mantle revisited. Geochim Cosmochim Acta, 72: 3542–3549Google Scholar
  193. Suzuki A, Ohtani E, Kato T. 1995. Flotation of diamond in mantle melt at high pressure. Science, 269: 216–218Google Scholar
  194. Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101: 435–452Google Scholar
  195. Tang Y J, Zhang H F, Nakamura E, Ying J F. 2011. Multistage melt/fluidperidotite interactions in the refertilized lithospheric mantle beneath the North China Craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol, 161: 845–861Google Scholar
  196. Tang Y J, Chen Y J, Zhou S, Ning J, Ding Z. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography. J Geophys Res-Solid Earth, 118: 2333–2346Google Scholar
  197. Tao R, Zhang L, Fei Y, Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim Cosmochim Acta, 143: 253–267Google Scholar
  198. Tatsumi Y, Maruyama S, Nohda S. 1990. Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection. Tectonophysics, 181: 299–306Google Scholar
  199. Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. London: Blackwell Science. 211Google Scholar
  200. Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications. 312Google Scholar
  201. Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265Google Scholar
  202. Tian Y, Zhao D P, Sun R M, Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 172: 169–182Google Scholar
  203. Tonegawa T, Hirahara K, Shibutani T, Iwamori H, Kanamori H, Shiomi K. 2008. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth Planet Sci Lett, 274: 346–354Google Scholar
  204. Ueda K, Gerya T, Sobolev S V. 2008. Subduction initiation by thermal-chemical plumes: Numerical studies. Phys Earth Planet Inter, 171: 296–312Google Scholar
  205. van der Lee S, Regenauer-Lieb K, Yuen D A. 2008. The role of water in connecting past and future episodes of subduction. Earth Planet Sci Lett, 273: 15–27Google Scholar
  206. van der Meer D G, Torsvik T H, Spakman W, van Hinsbergen D J J, Amaru M L. 2012. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nat Geosci, 5: 215–219Google Scholar
  207. van Hunen J, van den Berg A P, Vlaar N J. 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett, 182: 157–169Google Scholar
  208. van Hunen J, van den Berg A P, Vlaar N J. 2004. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: A numerical parameter study. Phys Earth Planet Inter, 146: 179–194Google Scholar
  209. van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401Google Scholar
  210. von Huene R, Ranero C R, Vannucchi P. 2004. Generic model of subduction erosion. Geology, 32: 913–916Google Scholar
  211. Wada I, Wang K L. 2009. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst, 10: Q10009Google Scholar
  212. Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60Google Scholar
  213. Wang X, Gao S, Liu X, Yuan H, Hu Z, Zhang H, Wang X. 2006. Geochemistry of high-Mg andesites from the early Cretaceous Yixian Formation, western Liaoning: Implications for lower crustal delamination and Sr/Y variations. Sci China Ser D-Earth Sci, 49: 904–914Google Scholar
  214. Wang W, Xu W, Ji W, Yang D, Pei F. 2006. Late Mesozoic and Paleogene basalts and deep-derived xenocrysts in eastern Liaoning province, China: Constraints on the nature of lithospheric mantle (in Chinese with English abstract). Geol J China Univ, 12: 30–40Google Scholar
  215. Wang Y, Zhao Z F, Zheng Y F, Zhang J J. 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in eastcentral China. Lithos, 125: 940–955Google Scholar
  216. Wang X C, Wilde S A, Li Q L, Yang Y N. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nat Commun, 6: 7700Google Scholar
  217. Wang Z S, Kusky T M, Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophys Res Lett, 43: 11567–11577Google Scholar
  218. Wang X J, Chen L H, Hofmann A W, Mao F G, Liu J Q, Zhong Y, Xie L W, Yang Y H. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett, 465: 16–28Google Scholar
  219. Wei W, Xu J, Zhao D, Shi Y. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. J Asian Earth Sci, 60: 88–103Google Scholar
  220. Wei W, Zhao D P, Xu J, Wei F, Liu G. 2015. P andS wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism. J Geophys Res Solid Earth, 120: 1642–1666Google Scholar
  221. White W M, Klein E M. 2014. Composition of the oceanic crust. Treatise Geochem, 4: 457–496Google Scholar
  222. Whittaker J M, Müller R D, Leitchenkov G, Stagg H, Sdrolias M, Gaina C, Goncharov A. 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science, 318: 83–86Google Scholar
  223. Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293Google Scholar
  224. Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119Google Scholar
  225. Wu F Y, Zhao G, Wilde S A, Sun D. 2005b. Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci, 24: 523–545Google Scholar
  226. Wu F Y, Yang J H, Wilde S A, Zhang X O. 2005c. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 221: 127–156Google Scholar
  227. Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006. The chemicaltemporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 70: 5013–5034Google Scholar
  228. Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton (in Chinese with English abstract). Acta Petrol Sin, 24: 1145–1174Google Scholar
  229. Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890Google Scholar
  230. Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36–65Google Scholar
  231. Xiao Y, Zhang H F, Fan W M, Ying J F, Zhang J, Zhao X M, Su B X. 2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117: 229–246Google Scholar
  232. Xu X S, O’Reilly S Y, Zhou X, Griffin W L. 1996. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 38: 41–62Google Scholar
  233. Xu X S, O’Reilly S Y, Griffin W L, Zhou X. 2000. Genesis of young lithospheric mantle in southeastern China: An LAM-ICPMS trace element study. J Petrol, 41: 111–148Google Scholar
  234. Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth (A), 26: 747–757Google Scholar
  235. Xu Y G, Sun M, Yan W, Liu Y, Huang X L, Chen X M. 2002. Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci, 20: 937–954Google Scholar
  236. Xu Y G, Ma J L, Huang X L, Iizuka Y, Chung S L, Wang Y B, Wu X Y. 2004a. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. Int J Earth Sci (Geol Rundsch), 93: 1025–1041Google Scholar
  237. Xu Y G, Chung S L, Ma J, Shi L. 2004b. Contrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. J Geol, 112: 593–605Google Scholar
  238. Xu Y G. 2006. Using basalt geochemistry to constrain the Mesozoic- Cenozoic evolution of the lithosphere beneath the North China Craton (in Chinese with English abstract). Earth Sci Fronti, 13: 93–104Google Scholar
  239. Xu Y G, Blusztajn J, Ma J L, Suzuki K, Liu J F, Hart S R. 2008. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, 102: 25–42Google Scholar
  240. Xu P F, Zhao D P. 2009. Upper-mantle velocity structure beneath the North China Craton: Implications for lithospheric thinning. Geophys J Int, 177: 1279–1283Google Scholar
  241. Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Sci Bull, 54: 3379–3396Google Scholar
  242. Xu Z, Zhao Z F, Zheng Y F. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146-147: 202–217Google Scholar
  243. Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184Google Scholar
  244. Xu Z, Zheng Y F, He H Y, Zhao Z F. 2014a. Phenocryst He-Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. J Volcanol Geotherm Res, 272: 99–110Google Scholar
  245. Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014b. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302Google Scholar
  246. Xu Y G. 2014. Recycled oceanic crust in the source of 90–40Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49–67Google Scholar
  247. Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259Google Scholar
  248. Xu Z, Zheng Y F, Zhao Z F. 2017. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 268-271: 302–319Google Scholar
  249. Yamamoto J, Nishimura K, Ishibashi H, Kagi H, Arai S, Prikhod’ko V S. 2012. Thermal structure beneath Far Eastern Russia inferred from geothermobarometric analyses of mantle xenoliths: Direct evidence for high geothermal gradient in backarc lithosphere. Tectonophysics, 554-557: 74–82Google Scholar
  250. Yan J, Chen J, Xie Z, Zhou T. 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chin Sci Bull, 48: 2139–2144Google Scholar
  251. Yang W, Li S. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 102: 88–117Google Scholar
  252. Yang J H, Chung S L, Zhai M G, Zhou X H. 2004. Geochemical and Sr-Nd- Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 145–160Google Scholar
  253. Yang J H, Chung S L, Wilde S A, Wu F, Chu M F, Lo C H, Fan H R. 2005a. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99–125Google Scholar
  254. Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F, Lo C H, Song B. 2005b. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh- pressure orogenic belt, east China and their relationship to lithospheric thinning. Chem Geol, 222: 200–231Google Scholar
  255. Yang J H, Sun J F, Chen F, Wilde S A, Wu F Y. 2007a. Sources and petrogenesis of late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton. J Petrol, 48: 1973–1997Google Scholar
  256. Yang J H, Wu F Y, Wilde S A, Liu X M. 2007b. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem Geol, 242: 155–175Google Scholar
  257. Yang J H, Sun J F, Zhang J H, Wilde S A. 2012. Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U-Pb age and Hf-O isotope evidence. Lithos, 153: 108–128Google Scholar
  258. Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139: 246–260Google Scholar
  259. Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164–182Google Scholar
  260. Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–460Google Scholar
  261. Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638Google Scholar
  262. Ying J F, Zhou X H, Su B X, Tang Y J. 2011. Continental growth and secular evolution: Constraints from U-Pb ages and Hf isotope of detrital zircons in Proterozoic Jixian sedimentary section (1.8–0.8Ga), North China Craton. Precambrian Res, 189: 229–238Google Scholar
  263. Yu J H, O’Reilly S Y, Griffin W L, Xu X, Zhang M, Zhou X. 2003. The thermal state and composition of the lithospheric mantle beneath the Leizhou Peninsula, South China. J Volcanol Geotherm Res, 122: 165–189Google Scholar
  264. Yu J H, O’Reilly S Y, Zhang M, Griffin W L, Xu X. 2006. Roles of melting and metasomatism in the formation of the lithospheric mantle beneath the Leizhou peninsula, south China. J Petrol, 47: 355–383Google Scholar
  265. Yu Y, Xu X S, Griffin W L, O’Reilly S Y, Xia Q K. 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 126: 182–197Google Scholar
  266. Zack T, Foley S F, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol, 43: 1947–1974Google Scholar
  267. Zhang H F, Sun M. 2002. Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. Int Geol Rev, 44: 370–382Google Scholar
  268. Zhang H F, Sun M, Lu F X, Zhou X H, Zhou M F, Liu Y S, Zhang G H. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J, 35: 315–331Google Scholar
  269. Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241–254Google Scholar
  270. Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 67: 4373–4387Google Scholar
  271. Zhang H, Liu X, Li Z, Yang F, Wang X. 2005. Early Cretaceous large-scale crustal thinning in the Fuxin-Yixian basin and adjacent area in western Liaoning (in Chinese with English abstract). Geol Rev, 51: 360–372Google Scholar
  272. Zhang H F, Goldstein S L, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293Google Scholar
  273. Zhang J, Zhang H, Ying J, Tang Y, Niu L. 2008. Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region, China: A petrological record. Isl Arc, 17: 231–241Google Scholar
  274. Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Sci Bull, 54: 3417–3437Google Scholar
  275. Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326Google Scholar
  276. Zhang J, Zhao Z F, Zheng Y F, Dai M. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119: 512–536Google Scholar
  277. Zhang J, Zhang H, Kita N, Shimoda G, Morishita Y, Ying J, Tang Y. 2011. Secular evolution of the lithospheric mantle beneath the eastern North China craton: Evidence from peridotitic xenoliths from Late Cretaceous mafic rocks in the Jiaodong region, east-central China. Int Geol Rev, 53: 182–211Google Scholar
  278. Zhang J, Zhao Z F, Zheng Y F, Liu X, Xie L. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225–245Google Scholar
  279. Zhang S H, Zhao Y, Davis G A, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci Rev, 131: 49–87Google Scholar
  280. Zhang Y, Wang C, Jin Z, Zhu L. 2017. Partial melting of stagnant oceanic lithosphere in the mantle transition zone and its geophysical implications. Lithos, 292-293: 379–387Google Scholar
  281. Zhao D P, Lei J, Tang R. 2004. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin Sci Bull, 49: 1401–1408Google Scholar
  282. Zhao Z F, Zheng Y F, Wei C S, Wu Y B, Chen F, Jahn B. 2005. Zircon UPb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83: 1–28Google Scholar
  283. Zhao Z F, Zheng Y F, Wei C S, Wu Y B. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248–272Google Scholar
  284. Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res, 11: 120–131Google Scholar
  285. Zhao D P, Ohtani E. 2009. Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. Gondwana Res, 16: 401–413Google Scholar
  286. Zhao Z F, Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Sci China Ser D-Earth Sci, 52: 1295–1318Google Scholar
  287. Zhao D P, Yu S, Ohtani E. 2011. East Asia: Seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci, 40: 689–709Google Scholar
  288. Zhao Z F, Zheng Y F, Wei C S, Wu F Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99–114Google Scholar
  289. Zhao G C, Cawood P A. 2012. Precambrian geology of China. Precambr Res, 222-223: 13–54Google Scholar
  290. Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q, Liu X. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88Google Scholar
  291. Zhao G C, Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res, 23: 1207–1240Google Scholar
  292. Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Sci Rep, 3: 3413Google Scholar
  293. Zhao Z F, Dai L Q, Zheng Y F. 2015. Two types of the crust-mantle interaction in continental subduction zones. Sci China Earth Sci, 58: 1269–1283Google Scholar
  294. Zhao D P, Isozaki Y, Maruyama S. 2017. Seismic imaging of the Asian orogens and subduction zones. J Asian Earth Sci, 145: 349–367Google Scholar
  295. Zhao Z F, Liu Z B, Chen Q. 2017. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. J Asian Earth Sci, 145: 260–277Google Scholar
  296. Zheng J P, O’Reilly S Y, Griffin W L, Lu F, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66Google Scholar
  297. Zheng J P, Sun M, Zhou M F, Robinson P. 2005. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 69: 3401–3418Google Scholar
  298. Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Li T, Zhang M, Zhang R Y, Liou J G. 2006a. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 47: 2233–2256Google Scholar
  299. Zheng J P, Griffin W L, O’Reilly S Y, Yang J S, Zhang R Y. 2006b. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 34: 705–708Google Scholar
  300. Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225Google Scholar
  301. Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Sci Bull, 54: 3347–3353Google Scholar
  302. Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358Google Scholar
  303. Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48Google Scholar
  304. Zheng J P, Griffin W L, Ma Q, O’Reilly S Y, Xiong Q, Tang H Y, Zhao J H, Yu C M, Su Y P. 2012. Accretion and reworking beneath the North China Craton. Lithos, 149: 61–78Google Scholar
  305. Zheng Y F, Xiao W J, Zhao G. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206Google Scholar
  306. Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069Google Scholar
  307. Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Nat Sci Rev, 3: 495–519Google Scholar
  308. Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682Google Scholar
  309. Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73Google Scholar
  310. Zhou X H, Zhu B Q, Liu R X, Chen W J. 1988. Cenozoic basaltic rocks in Eastern China. In: Macdougall J D, ed. Continental Flood Basalts. Dordrecht: Kluwer Academic Publishers. 311−330Google Scholar
  311. Zhou X, Sun M, Zhang G, Chen S. 2002. Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62: 111–124Google Scholar
  312. Zhou L Q, Xie J Y, Shen W S, Zheng Y, Yang Y J, Shi H X, Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int, 189: 1565–1583Google Scholar
  313. Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Sci Bull, 54: 3354–3366Google Scholar
  314. Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797Google Scholar
  315. Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012a. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587Google Scholar
  316. Zhu R X, Yang J H, Wu F Y. 2012b. Timing of destruction of the North China Craton. Lithos, 149: 51–60Google Scholar
  317. Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537Google Scholar
  318. Zou H B, Zindler A, Xu X S, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol, 171: 33–47Google Scholar
  319. Zou H, Fan Q, Yao Y. 2008. U-Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem Geol, 255: 134–142Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations