Skip to main content
Log in

Climate and extrema of ocean waves in the East China Sea

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal structure design, and risk assessment. In this paper, we implement a third generation wave model and conduct a high-resolution wave hindcast over the East China Sea to reconstruct a 15-year wave field from 1988 to 2002 for derivation of monthly mean wave parameters and analysis of extreme wave conditions. The numerical results of the wave field are validated through comparison with satellite altimetry measurements, low-resolution reanalysis, and the ocean wave buoy record. The monthly averaged wave height and wave period show seasonal variation and refined spatial patterns of surface waves in the East China Sea. The climatological significant wave height and mean wave period decrease from the open ocean in the southeast toward the continental area in the northwest, with the pattern generally following the bathymetry. Extreme analysis on the significant wave height at the buoy station indicates the hindcast data underestimate the extreme values relative to the observations. The spatial pattern of extreme wave height shows single peak emerges at the southwest of Ryukyu Island although a wind forcing with multi-core structure at the extreme is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas R, Hoffman R N, Ardizzone J, Leidner S M, Jusem J C, Smith D K, Gombos D. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Amer Meteorol Soc, 92: 157–174

    Article  Google Scholar 

  • Bai Y F, Cheung K F. 2013. Dispersion and nonlinearity of multi-layer non-hydrostatic free-surface flow. J Fluid Mech, 726: 226–260

    Article  Google Scholar 

  • Battjes J A, Janssen J P F M. 1978. Energy loss and set-up due to breaking of random waves. In: 16th International Conference on Coastal Engineering, American Society of Civil Engineers. Hamburg. 569–587

    Google Scholar 

  • Brodtkorb P A, Johannesson P, Lindgren G, Rychlik I, Rydén J, Sjö E. 2000. WAFO—A Matlab toolbox for the analysis of random waves and loads. In: 10th International Offshore and Polar Engineering Conference ISOPE. Seattle, 3: 343–350

    Google Scholar 

  • Caires S, Sterl A. 2005. A new nonparametric method to correct model data: Application to significant wave height from the ERA-40 Re-Analysis. J Atmos Ocean Technol, 22: 443–459

    Article  Google Scholar 

  • Cavaleri L, Alves J H G M, Ardhuin F, Babanin A, Banner M, Belibassakis K, Benoit M, Donelan M, Groeneweg J, Herbers T H C, Hwang P, Janssen P A E M, Janssen T, Lavrenov I V, Magne R, Monbaliu J, Onorato M, Polnikov V, Resio D, Rogers W E, Sheremet A, McKee Smith J, Tolman H L, van Vledder G, Wolf J, Young I. 2007. Wave modelling—The state of the art. Prog Oceanogr, 75: 603–674

    Article  Google Scholar 

  • Chen G, Bi S W, Ezraty R. 2004. Global structure of extreme wind and wave climate derived from TOPEX altimeter data. Int J Remote Sens, 25: 1005–1018

    Article  Google Scholar 

  • Chen Y P, Xie D M, Zhang C K, Qian X S. 2013. Estimation of long-term wave statistics in the East China Sea. J Coastal Res, 65: 177–182

    Article  Google Scholar 

  • Cooper C K, Forristall G Z. 1997. The use of satellite altimeter data to estimate the extreme wave climate. J Atmos Ocean Technol, 14: 254–266

    Article  Google Scholar 

  • Cui H, He H L, Liu X H, Li Y. 2012. Effect of oceanic current on typhoonwave modeling in the East China Sea. Chin Phys B, 21: 109201

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597

    Article  Google Scholar 

  • Ebuchi N, Kawamura H. 1994. Validation of wind speeds and significant wave heights observed by the TOPEX altimeter around Japan. J Oceanogr, 50: 479–487

    Article  Google Scholar 

  • Falqués A. 2006. Wave driven alongshore sediment transport and stability of the Dutch coastline. Coastal Eng, 53: 243–254

    Article  Google Scholar 

  • Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J Phys Oceanogr, 15: 1378–1391

    Google Scholar 

  • He H L, Chen D. 2011. Effects of surface wave breaking on the oceanic boundary layer. Geophys Res Lett, 38: L07604

    Article  Google Scholar 

  • He H L, Xu Y. 2016. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002. Acta Oceanol Sin, 35: 46–53

    Article  Google Scholar 

  • Huang Y, Yin B S, Perrie W, Hou Y J. 2008. Responses of summertime extreme wave heights to local climate variations in the East China Sea. J Geophys Res, 113: C09031

    Google Scholar 

  • Kim H S, Kim J H, Ho C H, Chu P S. 2010. Pattern classification of typhoon tracks using the Fuzzy c-means clustering method. J Clim, 24: 488–508

    Article  Google Scholar 

  • Li S, Li M, Gerbi G P, Song J B. 2013. Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean. J Geophys Res-Oceans, 118: 5173–5187

    Article  Google Scholar 

  • Li M K, Hou Y J. 2005. Simulating wind-wave field of the East China Seas with QuikSCAT/NCEP blended wind and WAVEWATCH (in Chinese). Mar Sci, 29: 9–12

    Google Scholar 

  • Liu B, Liu H Q, Xie L A, Guan C L, Zhao D L. 2011. A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon Weather Rev, 139: 132–152

    Article  Google Scholar 

  • Moon I J, Ginis I, Hara T. 2004. Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys Res Lett, 31: L20302

    Article  Google Scholar 

  • Palutikof J P, Brabson B B, Lister D H, Adcock S T. 1999. A review of methods to calculate extreme wind speeds. Meteorol App, 6: 119–132

    Article  Google Scholar 

  • Paskyabi M B, Fer I, Jenkins A D. 2012. Surface gravity wave effects on the upper ocean boundary layer: Modification of a one-dimensional vertical mixing model. Cont Shelf Res, 38: 63–78

    Article  Google Scholar 

  • Qiao F L, Song Z Y, Bao Y, Song Y J, Shu Q, Huang C J, Zhao W. 2013. Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res-Oceans, 118: 4514–4524

    Article  Google Scholar 

  • Semedo A, Sušelj K, Rutgersson A, Sterl A. 2011. A global view on the wind sea and swell climate and variability from ERA-40. J Clim, 24: 1461–1479

    Article  Google Scholar 

  • Song J B. 2009. The effects of random surface waves on the steady Ekman current solutions. Deep-Sea Res Part I-Oceanogr Res Pap, 56: 659–671

    Article  Google Scholar 

  • Song J B, Fan W, Li S, Zhou M. 2015. Impact of surface waves on the steady near-surface wind profiles over the ocean. Bound-Layer Meteorol, 155: 111–127

    Article  Google Scholar 

  • Sterl A, Komen G J, Cotton P D. 1998. Fifteen years of global wave hindcasts using winds from the European Centre for Medium-Range Weather Forecasts reanalysis: Validating the reanalyzed winds and assessing the wave climate. J Geophys Res, 103: 5477–5492

    Article  Google Scholar 

  • Stopa J E, Cheung K F. 2014. Periodicity and patterns of ocean wind and wave climate. J Geophys Res-Oceans, 119: 5563–5584

    Article  Google Scholar 

  • Tolman H L, Chalikov D. 1996. Source terms in a third-generation wind wave model. J Phys Oceanogr, 26: 2497–2518

    Article  Google Scholar 

  • Tolman H L, Balasubramaniyan B, Burroughs L D, Chalikov D V, Chao Y Y, Chen H S, Gerald V M. 2002. Development and implementation of wind-generated ocean surface wave modelsat NCEP. Weather Forecast, 17: 311–333

    Article  Google Scholar 

  • Wang H L, Yang Y Z, Sun B N, Shi Y F. 2017. Improvements to the statistical theoretical model for wave breaking based on the ratio of breaking wave kinetic and potential energy. Sci China Earth Sci, 60: 180–187

    Article  Google Scholar 

  • Wang J, Dong C, He Y. 2016. Wave climatological analysis in the East China Sea. Cont Shelf Res, 120: 26–40

    Article  Google Scholar 

  • WAMDI Group. 1988. The WAM model—A third generation ocean wave prediction model. J Phys Oceanogr, 18: 1775–1810

    Article  Google Scholar 

  • Xu Y, Bi F, Song J B, He H L. 2017a. The temporal and spatial variations in the Pacific wind and wave fields for the period 2002–2011. Acta Oceanol Sin, 36: 26–36

    Article  Google Scholar 

  • Xu Y, He H L, Song J B, Hou Y J, Li F N. 2017b. Observations and modeling of typhoon waves in the South China Sea. J Phys Oceanogr, 47: 1307–1324

    Article  Google Scholar 

  • Xu Y Q, Yin B S, Yang D Z, Cheng M H. 2005. Study of wave numerical model in East China Sea (in Chinese). Mar Sci, 29: 42–47

    Google Scholar 

  • Young I R. 1994. Global ocean wave statistics obtained from satellite observations. Appl Ocean Res, 16: 235–248

    Article  Google Scholar 

  • Young I R. 1999. Seasonal variability of the global ocean wind and wave climate. Int J Climatol, 19: 931–950

    Article  Google Scholar 

  • Zhao X X, Hou Y J, Li M K, Qi P. 2006. Analysis on monthly-averaged distribution of sea surface wind and wave over the seas southeast of Asia using ERS-2 scatterometer data. Chin J Ocean Limnol, 24: 97–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SOED HPCC for their computational support, and WAFO group for supplying the code (http://www.maths.lth.se/matstat/wafo/). The CCMP wind product was provided by Earth Science Enterprise (ESE) of National Aeronautics and Space Administration (NASA). TP satellite significant wave height was downloaded from Jet Propulsion Laboratory of NASA (https://www.jpl.nasa.gov/). Comments and suggestions provided by anonymous reviewers are greatly appreciated. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41476021, 41576013 & 41321004), the National High Technology Research and Development Program of China (Grant No. 2013AA122803), and National Program on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Song, J., Bai, Y. et al. Climate and extrema of ocean waves in the East China Sea. Sci. China Earth Sci. 61, 980–994 (2018). https://doi.org/10.1007/s11430-017-9156-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9156-7

Keywords

Navigation