Advertisement

Science China Earth Sciences

, Volume 60, Issue 12, pp 2118–2127 | Cite as

Quantitative model evaluation of organic carbon oxidation hypotheses for the Ediacaran Shuram carbon isotopic excursion

  • Wei Shi
  • Chao Li
  • Thomas J. Algeo
Research Paper
  • 90 Downloads

Abstract

The largest global carbon-cycle perturbation in Earth history was recorded in the Ediacaran—a persistent negative shift in the global marine dissolved inorganic carbon (DIC) reservoir that lasted for ∼25–50 million years, with a nadir of–12‰ (i.e., the Shuram Excursion, or SE). This event is considered to have been a result of full or partial oxidation of a large dissolved organic carbon (DOC) reservoir, which, if correct, provides evidence for massive DOC storage in the Ediacaran ocean owing to an intensive microbial carbon pump (MCP). However, this scenario was recently challenged by new hypotheses that relate the SE to oxidization of recycled continentally derived organic carbon or hydrocarbons from marine seeps. In order to test these competing hypotheses, this paper numerically simulates changes in global carbon cycle fluxes and isotopic compositions during the SE, revealing that: (1) given oxygen levels in the Ediacaran atmosphere-ocean of ≤40% PAL, the recycled continental organic carbon hypothesis and the full oxidation of oceanic DOC reservoir hypothesis are challenged by the atmospheric oxygen availability which would have been depleted in 4 and 6 million years, respectively; (2) the marine-seep hydrocarbon oxidation hypothesis is challenged by the exceedingly large hydrocarbon fluxes required to sustain the SE for >25 Myr; and (3) the heterogeneous (partial) DOC oxidation hypothesis is quantitatively able to account for the SE because the total amount of oxidants needed for partial oxidation (<50%) of the global DOC reservoir could have been met.

Keywords

Carbon isotope Shuram Excursion Dissolved organic carbon Atmospheric oxygen Oceanic oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Nianzhi Jiao, Maoyan Zhu, Xuelei Chu, Timothy W. Lyons, Dalton S. Hardisty, Erik A. Sperling, Graham, A. Shields-Zhou, Junhua Huang, Genming Luo, and Chao Li’s group for their helpful discussions. We thank the three reviewers for their valuable comments and suggestions. This work was supported by the National Program on Key Basic Research Project (Grant No. 2013CB955704), NSFC-RCUK_NERC Program (Grant No. 41661134048), the Fundamental Research Funds for Central Universities (Grant Nos. CUG-Wuhan; grants 1610491T01 and G1323531767), and the NASA Exobiology Program (TJA).

References

  1. Bao H, Lyons J R, Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 453: 504–506CrossRefGoogle Scholar
  2. Bartley J K, Kah L C. 2004. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology, 32: 129–132CrossRefGoogle Scholar
  3. Bowring S, Maow P, Landing E, Ramezani J, Grotzinger J. 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of metazoan. Regulat Toxicol Pharmacol, 25: 60–67Google Scholar
  4. Bristow T F, Kennedy M J. 2008. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863–866CrossRefGoogle Scholar
  5. Calver C R. 2000. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Res, 100: 121–150CrossRefGoogle Scholar
  6. Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92–95CrossRefGoogle Scholar
  7. Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–98CrossRefGoogle Scholar
  8. Cooles G P, Mackenzie A S, Quigley T M. 1986. Calculation of petroleum masses generated and expelled from source rocks. Org Geo Chem, 10: 235–245CrossRefGoogle Scholar
  9. Cui H, Kaufman A J, Xiao S, Zhou C, Liu X M. 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem Geol, 450: 59–80CrossRefGoogle Scholar
  10. Dai M, Wu K, Meng F. 2016. Net dissolved organic carbon production and carbon partitioning in the marginal seas. Abstracts of the 4th Conference on Earth System Science. ShanghaiGoogle Scholar
  11. Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram- Wonoka carbon isotope anomaly. Earth Planet Sci Lett, 294: 152–162CrossRefGoogle Scholar
  12. Fike D A, Grotzinger J P, Pratt L M, Summons R E. 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744–747CrossRefGoogle Scholar
  13. Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 4: 285–292CrossRefGoogle Scholar
  14. Gomes M L, Hurtgen M T. 2015. Sulfur isotope fractionation in modern euxinic systems: Implications for paleoenvironmental reconstructions of paired sulfate–sulfide isotope records. Geochim Cosmochim Acta, 157: 39–55CrossRefGoogle Scholar
  15. Jiang G, Kaufman A J, Christie-Blick N, Zhang S, Wu H. 2007. Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean d13C gradient. Earth Planet Sci Lett, 261: 303–320CrossRefGoogle Scholar
  16. Jiang G, Shi X, Zhang S, Wang Y, Xiao S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Res, 19: 831–849CrossRefGoogle Scholar
  17. Jiao N Z, Zhang C L, Li C, Wang X X, Dang H Y, Zeng Q L, Zhang R, Zhang Y, Tang K, Zhang Z L, Xu D P. 2013. Controlling mechanisms and climate effects of microbial carbon pump in the ocean (in Chinese). Sci Sin Terrae, 43: 1–18Google Scholar
  18. Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean—Future research directions. Biogeosciences, 11: 5285–5306CrossRefGoogle Scholar
  19. Johnston D T, Poulton S W, Tosca N J, O’Brien T, Halverson G P, Schrag D P, Macdonald F A. 2013. Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada. Chem Geol, 362: 273–286CrossRefGoogle Scholar
  20. Kaufman A J, Corsetti F A, Varni M A. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem Geol, 237: 47–63CrossRefGoogle Scholar
  21. DesMarais D J, Strauss H, Summons R E, Hayes J M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359: 605–609CrossRefGoogle Scholar
  22. Krylov N, Mikhaltsev A, Gramberg I, Kouzn O. 1997. Exploration Concepts for the Next Century. Abstract of World Petroleum CongressGoogle Scholar
  23. Kump L R, Garrels R M. 1986. Modeling atmospheric O2 in the global sedimentary redox cycle. Am J Sci, 286: 337–360CrossRefGoogle Scholar
  24. Kump L R, Arthur M A. 1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem Geol, 161: 181–198CrossRefGoogle Scholar
  25. Kump L R, Seyfried Jr. W E. 2005. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett, 235: 654–662CrossRefGoogle Scholar
  26. Kurtz A C, Kump L R, Arthur M A, Zachos J C, Paytan A. 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography, 18: 1101, doi: 10.1029/2003PA000937CrossRefGoogle Scholar
  27. Lee C, Fike D A, Love G D, Sessions A L, Grotzinger J P, Summons R E, Fischer W W. 2013. Carbon isotopes and lipid biomarkers from organicrich facies of the Shuram Formation, Sultanate of Oman. Geobiology, 11: 406–419CrossRefGoogle Scholar
  28. Lee C, Love G D, Fischer W W, Grotzinger J P, Halverson G P. 2015. Marine organic matter cycling during the Ediacaran Shuram excursion. Geology, 43: 1103–1106CrossRefGoogle Scholar
  29. Le Guerroué E, Allen P A, Cozzi A, Etienne J L, Fanning M. 2006. 50 Ma recovery from the largest negative δ 13C excursion in the Ediacaran ocean. Terra Nova, 18: 147–153CrossRefGoogle Scholar
  30. Li C, Planavsky N J, Shi W, Zhang Z, Zhou C, Cheng M, Tarhan L G, Luo G, Xie S. 2015. Ediacaran marine redox heterogeneity and early animal ecosystems. Sci Rep, 5: 17097CrossRefGoogle Scholar
  31. Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80–83CrossRefGoogle Scholar
  32. Li C, Hardisty D S, Luo G, Huang J, Algeo T J, Cheng M, Shi W, An Z, Tong J, Xie S, Jiao N, Lyons T W. 2017. Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology, 15: 211–224CrossRefGoogle Scholar
  33. Loyd S J, Marenco P J, Hagadorn J W, Lyons T W, Kaufman A J, Sour-Tovar F, Corsetti F A. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California. Earth Planet Sci Lett, 339–340: 79–94CrossRefGoogle Scholar
  34. Loyd S J, Marenco P J, Hagadorn J W, Lyons T W, Kaufman A J, Sour-Tovar F, Corsetti F A. 2013. Local δ 34S variability in ∼580 Ma carbonates of northwestern Mexico and the Neoproterozoic marine sulfate reservoir. Precambrian Res, 224: 551–569CrossRefGoogle Scholar
  35. Lu M, Zhu M, Zhang J, Shields-Zhou G, Li G, Zhao F, Zhao X, Zhao M. 2013. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res, 225: 86–109CrossRefGoogle Scholar
  36. Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315CrossRefGoogle Scholar
  37. McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–3202CrossRefGoogle Scholar
  38. Osburn M R, Owens J, Bergmann K D, Lyons T W, Grotzinger J P. 2015. Dynamic changes in sulfate sulfur isotopes preceding the Ediacaran Shuram Excursion. Geochim Cosmochim Acta, 170: 204–224CrossRefGoogle Scholar
  39. Pokrovskii B G, Melezhik V A, Bujakaite M I. 2006. Carbon, oxygen, strontium, and sulfur isotopic compositions in late Precambrian rocks of the Patom Complex, central Siberia: Communication 1. results, isotope stratigraphy, and dating problems. Lithol Miner Resour, 41: 450–474CrossRefGoogle Scholar
  40. Rothman D H, Hayes J M, Summons R E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 100: 8124–8129CrossRefGoogle Scholar
  41. Sahoo S K, Planavsky N J, Jiang G, Kendall B, Owens J D, Wang X, Shi X, Anbar A D, Lyons T W. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14: 457–468CrossRefGoogle Scholar
  42. Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549CrossRefGoogle Scholar
  43. Schrag D P, Higgins J A, Macdonald F A, Johnston D T. 2013. Authigenic carbonate and the history of the global carbon cycle. Science, 339: 540–543CrossRefGoogle Scholar
  44. Sperling E A, Wolock C J, Morgan A S, Gill B C, Kunzmann M, Halverson G P, Macdonald F A, Knoll A H, Johnston D T. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523: 451–454CrossRefGoogle Scholar
  45. Tziperman E, Halevy I, Johnston D T, Knoll A H, Schrag D P. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proc Natl Acad Sci USA, 108: 15091–15096CrossRefGoogle Scholar
  46. Verdel C, Wernicke B P, Bowring S A. 2011. The Shuram and subsequent Ediacaran carbon isotope excursions from southwest Laurentia, and implications for environmental stability during the metazoan radiation. Geolog Soc Am Bull, 123: 1539–1559CrossRefGoogle Scholar
  47. Wang H, Li C, Hu C, Xie S. 2015. Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir. J Earth Sci-China, 26: 883–892Google Scholar
  48. Zhu M, Gehling J G, Xiao S, Zhao Y, Droser M L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36: 867–870CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  3. 3.Department of GeologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations