Advertisement

Science China Earth Sciences

, Volume 60, Issue 11, pp 2059–2066 | Cite as

A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China

  • JianHui ChenEmail author
  • FeiYa Lv
  • XiaoZhong Huang
  • H. John B. Birks
  • Richard J. Telford
  • ShengRui Zhang
  • QingHai Xu
  • Yan Zhao
  • HaiPeng Wang
  • AiFeng Zhou
  • Wei Huang
  • JianBao Liu
  • GuoYing Wei
Research Paper

Abstract

Traditionally, the evaluation of pollen-based quantitative paleoclimate reconstructions focuses on the ability of calibration sets to infer present climatic conditions and/or the similarity between fossil and modern assemblages. Objective criteria for choosing the most appropriate climate parameter(s) to be reconstructed at a specific site are thus lacking. Using a novel approach for testing the statistical significance of a quantitative reconstruction using random environmental data, in combination with the advantageous large environmental gradients, abundant vegetation types and comprehensive modern pollen databases in China, we describe a new procedure for pollen-based quantitative paleoclimatic reconstructions. First, the most significant environmental variable controlling the fossil pollen assemblage changes is identified. Second, a calibration set to infer changes in this targeted variable is built up, by limiting the modern ranges of other environmental variables. Finally, the pollen-based quantitative reconstruction is obtained and its statistical significance assessed. This novel procedure was used to reconstruct the mean annual precipitation (P ann) from Gonghai Lake in the Lvliang Mountains, and Tianchi Lake in the Liupan Mountains, on the eastern and western fringe of the Chinese Loess Plateau, respectively. Both P ann reconstructions are statistically significant (p<0.001), and a sound and stable correlation relationship exists in their common period, showing a rapid precipitation decrease since 3300 cal yr BP. Thus, we propose that this procedure has great potential for reducing the uncertainties associated with pollen-based quantitative paleoclimatic reconstructions in China.

Keywords

Pollen Quantitative reconstructions Statistical significance Marginal areas of the Asian summer monsoon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the three reviewers for their constructive comments, Professors Zhuo Zheng and Houyuan Lv for providing some of the surface pollen data, Professors Houyuan Lv, and Haibin Wu for providing the interpolated climate data at the sampling sites, and Dr. Jan Bloemendal for English editing. The R script used in this paper is available from Jianhui Chen (jhchen@lzu.edu.cn) on request. The work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41471162 & 41571182) and the National Key R&D Program of China (Grant No. 2017YFA0603402).

References

  1. Amesbury M J, Swindles G T, Bobrov A, Charman D J, Holden J, Lamentowicz M, Mallon G, Mazei Y, Mitchell E A D, Payne R J, Roland T P, Turner T E, Warner B G. 2016. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quat Sci Rev, 152: 132–151CrossRefGoogle Scholar
  2. Bennett K D, Willis K J. 2001. Pollen. In: Smol J P, Birks H J B, Last W M, eds. Tracking Environmental Change Using Lake Sediments-Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Springer Netherlands. 5–32Google Scholar
  3. Birks H J B. 1998. Numerical tools in palaeolimnology-Progress, potentialities, and problems. J Paleolimn, 20: 301–332CrossRefGoogle Scholar
  4. Birks H J B, Gordon A D. 1985. Numerical Methods in Quaternary Pollen Analysis. London: Academic Press. 317Google Scholar
  5. Birks H J B, Lotter A F, Juggins S, Smol J P. 2012. Tracking Environmental Change Using Lake Sediments-Data Handling and Numerical Techniques. Heidelberg: Springer. 745CrossRefGoogle Scholar
  6. Cao X Y, Herzschuh U, Telford R J, Ni J. 2014. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction. Rev Palaeobot Palynol, 211: 87–96CrossRefGoogle Scholar
  7. Chen F, Chen X, Chen J, Zhou A, Wu D, Tang L, Zhang X, Huang X, Yu J. 2014. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. J Quat Sci, 29: 661–674CrossRefGoogle Scholar
  8. Chen F, Xu Q, Chen J, Birks H J B, Liu J, Zhang S, Jin L, An C, Telford R J, Cao X, Wang Z, Zhang X, Selvaraj K, Lu H, Li Y, Zheng Z, Wang H, Zhou A, Dong G, Zhang J, Huang X, Bloemendal J, Rao Z. 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Sci Rep, 5: 11186CrossRefGoogle Scholar
  9. Chen J H, Rao Z G, Liu J B, Huang W, Feng S, Dong G H, Hu Y, Xu Q H, Chen F H. 2016. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record reflect monsoon rainfall variability? Sci China Earth Sci, 59: 2328–2338CrossRefGoogle Scholar
  10. Cooper G R J, Cowan D R. 2008. Comparing time series using wavelet-based semblance analysis. Comp Geosci, 34: 95–102CrossRefGoogle Scholar
  11. Editorial Board of Vegetation of China. 1980. Vegetation of China (in Chinese). Beijing: Science Press. 1382Google Scholar
  12. Fang X, Hou G. 2011. Sythetically reconstructed Holocene temperature change in China (in Chinese). Sci Geogr Sin, 31: 385–393Google Scholar
  13. Ge Q, Wang S, Wen X, Shen C, Hao Z. 2007. Temperature and precipitation changes in China during the Holocene. Adv Atmos Sci, 24: 1024–1036CrossRefGoogle Scholar
  14. Guiot J, Torre F, Jolly D, Peyron O, Boreux J J, Cheddadi R. 2000. Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: Application to glacial climate in Mediterranean region. Ecol Model, 127: 119–140CrossRefGoogle Scholar
  15. Herzschuh U, Birks H J B, Mischke S, Zhang C, Böhner J. 2010. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. J Biogeogr, 37: 752–766CrossRefGoogle Scholar
  16. Herzschuh U, Borkowski J, Schewe J, Mischke S, Tian F. 2014. Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol, 402: 44–54CrossRefGoogle Scholar
  17. Jiang D, Lang X, Tian Z, Wang T. 2012. Considerable model-data mismatch in temperature over China during the Mid-Holocene: Results of PMIP simulations. J Clim, 25: 4135–4153CrossRefGoogle Scholar
  18. Jiang W, Guiot J L, Chu G, Wu H, Yuan B, Hatté C, Guo Z. 2010. An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas, 39: 145–153CrossRefGoogle Scholar
  19. Jones R T, Turney C S M, Lang B, Brooks S J, Rundgren M, Hammarlund D, Björck S, Fogwill C J. 2017. Delayed maximum northern European summer temperatures during the Last Interglacial as a result of Greenland Ice Sheet melt. Geology, 45: 23–26CrossRefGoogle Scholar
  20. Juggins S. 2015. Rioja: Analysis of Quaternary Science Data, R package version 0.9-9. Newcastle upon Tyne: University of NewcastleGoogle Scholar
  21. Juggins S, Birks H J B. 2012. Quantitative environmental reconstructions from biological data. In: Birks H J B, Lotter A F, Juggins S, Smol J P, eds. Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques. Dordrecht: Springer Netherlands. 431–494CrossRefGoogle Scholar
  22. Li J, Dodson J, Yan H, Zhang D D, Zhang X, Xu Q, Lee H F, Pei Q, Cheng B, Li C, Ni J, Sun A, Lu F, Zong Y. 2017. Quantifying climatic variability in monsoonal northern China over the last 2200 years and its role in driving Chinese dynastic changes. Quat Sci Rev, 159: 35–46CrossRefGoogle Scholar
  23. Li Q, Wu H, Yu Y, Sun A, Marković S B, Guo Z. 2014. Reconstructed moisture evolution of the deserts in northern China since the Last Glacial Maximum and its implications for the East Asian Summer Monsoon. Glob Planet Change, 121: 101–112CrossRefGoogle Scholar
  24. Lu H, Wu N, Liu K, Zhu L, Yang X, Yao T, Wang L, Li Q, Liu X, Shen C, Li X, Tong G, Jiang H. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev, 30: 947–966CrossRefGoogle Scholar
  25. Luoto T P, Nevalainen L. 2013. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features. Sci Rep, 3: 2488CrossRefGoogle Scholar
  26. Ni J, Cao X, Jeltsch F, Herzschuh U. 2014. Biome distribution over the last 22000 yr in China. Palaeogeogr Palaeoclimatol Palaeoecol, 409: 33–47CrossRefGoogle Scholar
  27. Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P R, O’Hara R B, Simpson G L, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H. 2017. Vegan: Community Ecology Package, R package version 2.4-2. Oulu: University of OuluGoogle Scholar
  28. Qin F, Zhao Y. 2013. Methods of quantitative climate reconstruction based on palynological data and their applications in China (in Chinese). Quat Sci, 33: 1054–1068Google Scholar
  29. R Core Team 2013. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical ComputingGoogle Scholar
  30. Rehfeld K, Trachsel M, Telford R J, Laepple T. 2016. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world. Clim Past, 12: 2255–2270CrossRefGoogle Scholar
  31. Salonen J S, Luoto M, Alenius T, Heikkilä M, Seppä H, Telford R J, Birks H J B. 2014. Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: Comparison and synthesis with other quantitative reconstruction methods. Quat Sci Rev, 88: 69–81CrossRefGoogle Scholar
  32. Simpson G L. 2012. Analogue Methods in Palaeolimnology. In: Birks H J B, Lotter A F, Juggins S, Smol J P, eds. Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques. Dordrecht: Springer Netherlands. 495–522CrossRefGoogle Scholar
  33. Song C, Sun X. 1997. Establishment of transfer functions of the pollen-climatic factors in northern China and the quantitative climatic reconstruction at DJ core (in Chinese). Acta Bot Sin, 39: 554–560Google Scholar
  34. Stebich M, Rehfeld K, Schlütz F, Tarasov P E, Liu J, Mingram J. 2015. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat Sci Rev, 124: 275–289CrossRefGoogle Scholar
  35. Telford R J, Birks H J B. 2011. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat Sci Rev, 30: 1272–1278CrossRefGoogle Scholar
  36. Telford R, Trachsel M. 2015. PalaeoSig: Significance Tests for Palaeoenvironmental Reconstructions, R package version 1.1-3. Bergen: University of BergenGoogle Scholar
  37. Tong G, Wu R. 1997. Vegetation and climatic quantitative reconstruction of Longgan Lake since the past 3000 years (in Chinese). Mar Geol Quat Geol, 17: 53–61Google Scholar
  38. Trauth M H. 2015. MATLAB Recipes for Earth Sciences. 4th ed. Verlag Berlin Heidelberg: Springer. 427CrossRefGoogle Scholar
  39. Wang H, Chen J, Zhang X, Chen F. 2014. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian summer monsoon: Evidence for a mid-Holocene maximum. Quat Int, 334-335: 155–164CrossRefGoogle Scholar
  40. Wang S, Gong D, Zhu J. 2001. Twentieth-century climatic warming in China in the context of the Holocene. Holocene, 11: 313–321CrossRefGoogle Scholar
  41. Wu H, Guiot J, Brewer S, Guo Z, Peng C. 2007. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proc Natl Acad Sci USA, 104: 9720–9724CrossRefGoogle Scholar
  42. Xiao J, Chen J, Li H, Xu Z, Sun G, Niu C, Yang G. 2008. Quantitative analysis of the Quaternary sporopollen assemblages: A case study of hole HZ-S core in Handan, Hebei, China (in Chinese). Geol Bull China, 27: 599–604Google Scholar
  43. Xu Q, Chen F, Zhang S, Cao X, Li J, Li Y, Li M, Chen J, Liu J, Wang Z. 2017. Vegetation succession and East Asian Summer Monsoon Changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. Holocene, 27: 835–846CrossRefGoogle Scholar
  44. Xu Q, Li M, Zhang S, Zhang Y, Zhang P, Lu J. 2015. Modern pollen processes of China: Progress and problems (in Chinese). Sci Sin Terr, 58: 1661–1682CrossRefGoogle Scholar
  45. Xu Q, Xiao J, Li Y, Tian F, Nakagawa T. 2010. Pollen-based quantitative reconstruction of holocene climate changes in the Daihai Lake Area, Inner Mongolia, China. J Clim, 23: 2856–2868CrossRefGoogle Scholar
  46. Yang S, Ding Z, Li Y, Wang X, Jiang W, Huang X. 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc Natl Acad Sci USA, 112: 13178–13183CrossRefGoogle Scholar
  47. Zhang H, Zhang Y, Kong Z, Yang Z, Li Y, Tarasov P E. 2015. Late Holocene climate change and anthropogenic activities in north Xinjiang: Evidence from a peatland archive, the Caotanhu wetland. Holocene, 25: 323–332CrossRefGoogle Scholar
  48. Zhao Y, Chen F, Zhou A, Yu Z, Zhang K. 2010. Vegetation history, climate change and human activities over the last 6200years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeogr Palaeoclimatol Palaeoecol, 293: 197–205CrossRefGoogle Scholar
  49. Zhao H, Huang W, Feng S, Chen F, Xian W. 2017. Optimization and evaluation of monthly air temperature and precipitation gridded datasets with 0.025° spatial resolution over China for 1951−2015. Theor Appl Climatol, under reviewGoogle Scholar
  50. Zheng Z, Guiot J. 1999. A 400000-year paleoclimate reconstruction in tropical region of China (in Chinese). J Sun Yat-sen Univ (Nat Sci), 38: 94–98Google Scholar
  51. Zheng Z, Wei J, Huang K, Xu Q, Lu H, Tarasov P, Luo C, Beaudouin C, Deng Y, Pan A, Zheng Y, Luo Y, Nakagawa T, Li C, Yang S, Peng H, Cheddadi R. 2014. East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate. J Biogeogr, 41: 1819–1832CrossRefGoogle Scholar
  52. Zheng Z, Zhang X, Man M, Wei J, Huang K. 2016. Review and data integration of pollen-based quantitative paleoclimate reconstruction studies in China and adjacent areas (in Chinese). Quat Sci, 36: 503–519Google Scholar
  53. Zhou A F, Sun H L, Chen F H, Zhao Y, An C B, Dong G H, Wang Z L, Chen J H. 2010. High-resolution climate change in mid-late Holocene on Tianchi Lake, Liupan Mountain in the Loess Plateau in central China and its significance. Chin Sci Bull, 55: 2118–2121CrossRefGoogle Scholar
  54. Zhu C, Chen X, Zhang G, Ma C, Zhu Q, Li Z, Xu W. 2008. Spore-pollenclimate factor transfer function and paleoenvironment reconstruction in Dajiuhu, Shennongjia, Central China. Chin Sci Bull, 53: 42–49CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • JianHui Chen
    • 1
    Email author
  • FeiYa Lv
    • 1
  • XiaoZhong Huang
    • 1
  • H. John B. Birks
    • 2
  • Richard J. Telford
    • 2
  • ShengRui Zhang
    • 3
  • QingHai Xu
    • 3
  • Yan Zhao
    • 4
    • 5
  • HaiPeng Wang
    • 1
  • AiFeng Zhou
    • 1
  • Wei Huang
    • 1
  • JianBao Liu
    • 1
  • GuoYing Wei
    • 1
  1. 1.Key Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  2. 2.Department of Biology and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  3. 3.Institute of Nihewan Archaeology ResearchHebei Normal UniversityShijiazhuangChina
  4. 4.Institute of Geographic Science and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations