Science China Earth Sciences

, Volume 60, Issue 9, pp 1614–1631 | Cite as

On the “spring predictability barrier” for strong El Niño events as derived from an intermediate coupled model ensemble prediction system

Research Paper Special Topic: Challenges and uncertainties of ENSO prediction: Enlightenments from El Niño event of 2015–2016

Abstract

Using predictions for the sea surface temperature anomaly (SSTA) generated by an intermediate coupled model (ICM) ensemble prediction system (EPS), we first explore the “spring predictability barrier” (SPB) problem for the 2015/16 strong El Niño event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Niño event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Niño occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Niño predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Niño event. By investigating the model errors represented by the tendency errors for the SSTA component, we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Niño event and explain why the 2015/16 El Niño was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector (NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Niño events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Niño events could be greatly enhanced by using the NFSV-like tendency error to correct the model.

Keywords

2015/16 strong El Niño event Spring predictability barrier Initial errors Model errors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41230420 & 41525017) and the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201306018).

References

  1. Balmaseda M A, Anderson D L T, Davey M K. 1994. ENSO predictability using a dynamical ocean model coupled to a statistical atmospheres. Tellus-A, 46: 497–511CrossRefGoogle Scholar
  2. Blanke B, Neelin J D, Gutzler D. 1997. Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim, 10: 1473–1486CrossRefGoogle Scholar
  3. Buizza R. 1994. Sensitivity of optimal unstable structures. Q J R Met Soc, 120: 429–451CrossRefGoogle Scholar
  4. Chang P, Ji L, Saravanan R. 2001. A hybrid coupled model study of tropical Atlantic variability. J Clim, 14: 361–390CrossRefGoogle Scholar
  5. Chen D, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for EI Nino forecasting: Implications for predictability. Science, 269: 1699–1702CrossRefGoogle Scholar
  6. Chen D, Cane M A, Kaplan A, Zebiak S E, Huang D. 2004. Predictability of El Niño over the past 148 years. Nature, 428: 733–736CrossRefGoogle Scholar
  7. Duan W S, Liu X C, Zhu K Y, Mu M. 2009. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J Geophys Res, 114: doi: 10.1029/2008JC004925Google Scholar
  8. Duan W S, Wei C. 2012. The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int J Clim, 33: 1280–1292CrossRefGoogle Scholar
  9. Duan W S, Zhao P. 2015. Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Clim Dyn, 44: 2351–2367CrossRefGoogle Scholar
  10. Duan W, Hu J. 2015. The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Clim Dyn, 46: 3599–3615CrossRefGoogle Scholar
  11. Duan W, Huo Z. 2016. An approach to generating mutually independent initial perturbations for ensemble forecasts: Orthogonal conditional nonlinear optimal perturbations. J Atmos Sci, 73: 997–1014CrossRefGoogle Scholar
  12. Duan W, Zhao P, Hu J, Xu H. 2016. The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO. J Meteorol Res, 30: 853–866CrossRefGoogle Scholar
  13. Duan W, Zhou F. 2013. Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A-Dyn Meteor Oceanogr, 65: 18452CrossRefGoogle Scholar
  14. Evensen G. 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn, 53: 343–367CrossRefGoogle Scholar
  15. Evensen G. 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn, 54: 539–560CrossRefGoogle Scholar
  16. Flugel M, Chang P. 1998. Does the predictability of ENSO depend on the seasonal cycle? J Atmos Sci, 55: 3230–3243CrossRefGoogle Scholar
  17. Feng L, Zheng F, Zhu J, Liu H. 2015. The role of stochastic model error perturbations in predicting the 2011/12 double-dip La Niña. SOLA, 11: 65–69CrossRefGoogle Scholar
  18. Hamill T M, Whitaker J S, Snyder C. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Wea Rev, 129: 2776–2790CrossRefGoogle Scholar
  19. Hao Z, Ghil M. 1994. Data assimilation in a simple tropical ocean model with wind stress errors. J Phys Oceanogr, 24: 2111–2128CrossRefGoogle Scholar
  20. Hu J Y, Duan W S. 2016. Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. J Geophys Res, 121: doi: 10. 1002/2015JC011386Google Scholar
  21. Jin E K, Kinter Iii J L, Wang B, Park C K, Kang I S, Kirtman B P, Kug J S, Kumar A, Luo J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn, 31: 647–664CrossRefGoogle Scholar
  22. Keenlyside N, Kleeman R. 2002. On the annual cycle of the zonal currents in the equatorial Pacific. J Geophys Res, 107: doi: 10. 1029/2000JC0007111Google Scholar
  23. Kim H M, Morgan M C, Morss R E. 2004. Evolution of analysis error and adjoint-based sensitivities: Implications for adaptive observations. J Atmos Sci, 61: 795–812CrossRefGoogle Scholar
  24. Kirtman B P, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S. 2002. Current status of ENSO forecast skill: A report to the Climate Variability and Predictability Numerical Experimentation Group. CLIVAR Working Group on Seasonal to Interannual Prediction. Clim. Variability and Predictability, Southampton Oceanogr. Cent., Southampton, UKGoogle Scholar
  25. Latif M, Barnett T P, Cane M A, Flügel M, Graham N E, von Storch H, Xu J S, Zebiak S E. 1994. A review of ENSO prediction studies. Clim Dyn, 9: 167–179CrossRefGoogle Scholar
  26. Lau K M, Yang S. 1996. The Asian monsoon and predictability of the tropical ocean-atmosphere system. Q J R Meteorol Soc, 122: 945–957Google Scholar
  27. Larson S M, Kirtman B P. 2016. Drivers of coupled model ENSO error dynamics and the spring predictability barrier. Clim Dyn, 48: 3631–3644CrossRefGoogle Scholar
  28. Levine A F Z, McPhaden M J. 2015. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys Res Lett, 42: 5034–5041CrossRefGoogle Scholar
  29. Liu Z. 2002. A simple model study of ENSO suppression by external periodic forcing. J Clim, 15: 1088–1098CrossRefGoogle Scholar
  30. Lopez H, Kirtman B P. 2014. WWBS, ENSO predictability, the spring barrier and extreme events. J Geophys Res Atmos, 119: 10114–10138. doi: 10.1002/2014JD021908CrossRefGoogle Scholar
  31. Luo J J, Masson S, Behera S K, Yamagata T. 2008. Extended ENSO predictions using a fully coupled ocean-atmosphere model. J Clim, 21: 84–93CrossRefGoogle Scholar
  32. Mc Phaden M J. 2003. Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett, 30: 319–338Google Scholar
  33. Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlin Processes Geophys, 10: 493–501CrossRefGoogle Scholar
  34. Mu M, Duan W, Wang B. 2007a. Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J Geophys Res, 112: D10113CrossRefGoogle Scholar
  35. Mu M, Xu H, Duan W S. 2007b. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys Res Lett, 34: doi: 10.1029/2006GL-27412Google Scholar
  36. Mu M, Yu Y, Xu H, Gong T. 2014. Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor Appl Climatol, 115: 461–469CrossRefGoogle Scholar
  37. Ropelewski C F, Halpert M S. 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev, 115: 1606–1626CrossRefGoogle Scholar
  38. Ren H L, Jin F F, Song B, Lu B, Tian J Q, Zuo Y, Liu J, Wu C B, ZhaoY, Nie P Q, Zhang J B, Yu J, Wu J H, WanY P, Yan F Z. 2017. Prediction of Primary Climate Variability Modes at the Beijing Climate Center. J Meteor Res, 31: 204–223CrossRefGoogle Scholar
  39. Ren H L, Jin F F, Tian B, Scaife A A. 2016. Distinct persistence barriers in two types of ENSO. Geophys Res Lett, 43: 10973–10979CrossRefGoogle Scholar
  40. Smith T M, and Reynolds R W. 2004. Improved Extended Reconstruction of SST 1854–1997. J Clim, 17: 2466–2477CrossRefGoogle Scholar
  41. Smith T M, Reynolds R W, Peterson T C, Lawrimore J. 2008. Improvements NOAAs historical merged land-ocean temp analysis (1880–2006). J Clim, 21: 2283–2296CrossRefGoogle Scholar
  42. Syu H H, Neelin J D, Gutzler D. 1995. Seasonal and interannual variability in a hybrid coupled GCM. J Clim, 8: 2121–2143CrossRefGoogle Scholar
  43. Torrence C, Webster P J. 1998. The annual cycle of persistence in the El Niño Southern Oscillation. Q J R Meteorol Soc, 124: 1985–2004Google Scholar
  44. Trenberth K E, Branstator G W, Karoly D, Kumar A, Lau N C, Ropelewski C. 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res, 103: 14291–14324CrossRefGoogle Scholar
  45. Webster P J, Yang S. 1992. Monsoon and Enso: Selectively interactive systems. Q J R Met Soc, 118: 877–926CrossRefGoogle Scholar
  46. Webster P J. 1995. The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteorl Atmos Phys, 56: 33–55CrossRefGoogle Scholar
  47. Williams P D. 2005. Modelling climate change: The role of unresolved processes. Philos Trans R Soc A-Math Phys Eng Sci, 363: 2931–2946CrossRefGoogle Scholar
  48. Wu D H, Anderson D L T, Davey M K. 1993. ENSO variability and external impacts. J Clim, 6: 1703–1717CrossRefGoogle Scholar
  49. Xue Y, Cane M A, Zebiak S E. 1997a. Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon Weather Rev, 125: 2043–2056CrossRefGoogle Scholar
  50. Xue Y, Cane M A, Zebiak S E. 1997b. Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon Weather Rev, 125: 2057–2073CrossRefGoogle Scholar
  51. Yu Y, Duan W, Xu H, Mu M. 2009. Dynamics of nonlinear error growth and season-dependent predictability of El Nino events in the Zebiak-Cane model. Q J R Meteorol Soc, 135: 2146–2160CrossRefGoogle Scholar
  52. Yu Y, Mu M, Duan W, Gong T. 2012. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J Geophys Res, 117: C06018Google Scholar
  53. Yu Y, Mu M, Duan W. 2012. Does model parameter error cause a significant “spring predictability barrier” for el niño events in the Zebiak-Cane Model? J Clim, 25: 1263–1277CrossRefGoogle Scholar
  54. Zavala-Garay J, Moore A M, Kleeman R. 2004. Influence of stochastic forcing on ENSO prediction. J Geophys Res-Oceans, 109: C11007. doi: 10.1029/2004JC002406CrossRefGoogle Scholar
  55. Zebiak S E, Cane M A. 1987. A model El Niño-Southern Oscillation. Mon Wea Rev, 115: 2262–2278CrossRefGoogle Scholar
  56. Zhang R H, Zebiak S E, Kleeman R, Keenlyside N. 2003. A new intermediate coupled model for El Niño simulation and prediction. Geophys Res Lett, 30:153–166Google Scholar
  57. Zhang R H, Zebiak S E, Kleeman R, Keenlyside N. 2005. Retrospective El Niño forecasts using an improved intermediate coupled model. Mon Wea Rev, 133: 2777–2802CrossRefGoogle Scholar
  58. Zheng F, Zhu J, Zhang R H, Zhou G Q. 2006. Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys Res Lett, 33: L19604CrossRefGoogle Scholar
  59. Zheng F. 2007. Researches on ENSO ensemble predictions (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Atmospheric Physics, Chinese Academy of SciencesGoogle Scholar
  60. Zheng F, Zhu J, Zhang R H. 2007. Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys Res Lett, 34: L13611Google Scholar
  61. Zheng F, Zhu J. 2008. Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J Geophys Res, 113: 341–355Google Scholar
  62. Zheng F, Zhu J, Wang H, Zhang R H. 2009a. Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv Atmos Sci, 26: 359–372CrossRefGoogle Scholar
  63. Zheng F, Wang H, Zhu J. 2009b. ENSO ensemble prediction: Initial error perturbations vs. model error perturbations. Chin Sci Bull, 54: 2516–2523CrossRefGoogle Scholar
  64. Zheng F, Zhu J. 2010. Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Glob Planet Change, 72: 108–117CrossRefGoogle Scholar
  65. Zheng F, Zhu J. 2010. Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dyn, 60: 1061–1073CrossRefGoogle Scholar
  66. Zheng F, Zhu J. 2015. Roles of initial ocean surface and subsurface states on successfully predicting 2006–2007 El Niño with an intermediate coupled model. Ocean Sci, 11: 187–194CrossRefGoogle Scholar
  67. Zheng F, Zhu J. 2016. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Clim Dyn, 47: 3901–3915CrossRefGoogle Scholar
  68. Zheng F, Zhu J, Zhang R H, Peng J B. 2016. Successful Prediction for the Super El Niño Event in 2015. Bull Chin Acad Sci, 31: 251–257Google Scholar
  69. Zhai P, Yu R, Guo Y, Li Q, Ren X, Wang Y, Xu W, Liu Y, Ding Y. 2016. The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J Meteorol Res, 30: 283–297CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • QianQian Qi
    • 1
    • 2
  • WanSuo Duan
    • 1
    • 2
  • Fei Zheng
    • 3
  • YouMin Tang
    • 4
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.International Center for Climate and Environment Science, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Second Institute of OceanologyState Oceanic AdministrationHangzhouChina

Personalised recommendations