Science China Earth Sciences

, Volume 60, Issue 9, pp 1685–1693 | Cite as

Stratospheric entry point for upper-tropospheric air within the Asian summer monsoon anticyclone

  • QiuJun Fan
  • JianChun BianEmail author
  • Laura L. Pan
Research Paper


The Asian summer monsoon (ASM) anticyclone isolates upper-tropospheric air within the interior of the anticyclone from the outside. Forward trajectory simulations in previous studies have shown that much of the air within the ASM anticyclone can be trapped for up to two or three weeks, not only laterally but also vertically. Here, we investigate the locations of exit points for upper-tropospheric air trapped within the ASM anticyclone, especially the preferred tropopause-crossing locations, using a 3-dimensional trajectory model. Forward trajectory calculations show two-thirds of the air crosses the tropopause at the southern part of the anticyclone via upward diabatic transport. Furthermore, some air crosses at northern and eastern parts via isentropic shedding, but air crosses rarely through the center of the anticyclone. However, calculations also show that many stratospheric parcels within the anticyclone are traceable from the upper-tropospheric anticyclone. This implies they cannot break through the tropopause directly overhead but instead enter the stratosphere via other entry points.


Asian summer monsoon anticyclone Tropopause Stratosphere-troposphere exchange Trajectory simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 91337214 & 41675040).


  1. Bergman J W, Fierli F, Jensen E J, Honomichl S, Pan L L. 2013. Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J Geophys Res-Atmos, 118: 2560–2575CrossRefGoogle Scholar
  2. Bian J C, Pan L L, Paulik L, Vömel H, Chen H, Lu D. 2012. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys Res Lett, 39: L19808CrossRefGoogle Scholar
  3. Bowman K P. 1993. Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J Geophys Res, 98: 23013–23027CrossRefGoogle Scholar
  4. Bowman K P, Carrie G D. 2002. The mean-meridional transport circulation of the troposphere in an idealized GCM. J Atmos Sci, 59: 1502–1514CrossRefGoogle Scholar
  5. Chen B, Xu X D, Yang S, Zhao T L. 2012. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach. Atmos Chem Phys, 12: 5827–5839CrossRefGoogle Scholar
  6. Dethof A, O’Neill A, Slingo J M, Smit H G J. 1999. A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Q J R Meteorol Soc, 125: 1079–1106CrossRefGoogle Scholar
  7. Feng S, Fu Y F, Xiao Q N. 2011. Is the tropopause higher over the Tibetan Plateau? Observational evidence from constellation observing system for meteorology, ionosphere, and climate (COSMIC) data. J Geophys Res, 116: D21121CrossRefGoogle Scholar
  8. Garny H, Randel W J. 2016. Transport pathways from the Asian monsoon anticyclone to the stratosphere. Atmos Chem Phys, 16: 2703–2718CrossRefGoogle Scholar
  9. Gettelman A, Kinnison D E, Dunkerton T J, Brasseur G P. 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere. J Geophys Res, 109: D22101Google Scholar
  10. Gettelman A, Hoor P, Pan L L, Randel W J, Hegglin M I, Birner T. 2011. The extratropical upper troposphere and lower stratosphere. Rev Geophys, 49: RG3003CrossRefGoogle Scholar
  11. Homeyer C R, Pan L L, Dorsi S W, Avallone L M, Weinheimer A J, O’Brien A S, DiGangi J P, Zondlo M A, Ryerson T B, Diskin G S, Campos T L. 2014. Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. J Geophys Res-Atmos, 119: 10941–10958CrossRefGoogle Scholar
  12. James R, Bonazzola M, Legras B, Surbled K, Fueglistaler S. 2008. Water vapor transport and dehydration above convective outflow during Asian monsoon. Geophys Res Lett, 35: L20810CrossRefGoogle Scholar
  13. Li D, Bian J C. 2015. Observation of a summer tropopause fold by ozonesonde at Changchun, China: Comparison with reanalysis and model simulation. Adv Atmos Sci, 32: 1354–1364CrossRefGoogle Scholar
  14. Li D, Bian J C, Fan Q J. 2015. A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Sci China Earth Sci, 58: 116–128CrossRefGoogle Scholar
  15. Li Q B, Jiang J H, Wu D L, Read W G, Livesey N J, Waters J W, Zhang Y, Wang B, Filipiak M J, Davis C P, Turquety S, Wu S, Park R J, Yantosca R M, Jacob D J. 2005. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys Res Lett, 32: L14826Google Scholar
  16. Luo J L, Tian W, Pu Z, Zhang P, Shang L, Zhang M, Hu J. 2013. Characteristics of stratosphere-troposphere exchange during the Meiyu season. J Geophys Res-Atmos, 118: 2058–2072CrossRefGoogle Scholar
  17. Orbe C, Waugh D W, Newman P A. 2015. Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air. Geophys Res Lett, 42: 4240–4248CrossRefGoogle Scholar
  18. Pan L L, Munchak L A. 2011. Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J Geophys Res, 116: D12201CrossRefGoogle Scholar
  19. Pan L L, Honomichl S B, Kinnison D E, Abalos M, Randel W J, Bergman J W, Bian J. 2016. Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon. J Geophys Res-Atmos, 121: 14159–14174CrossRefGoogle Scholar
  20. Park M, Randel W J, Kinnison D E, Garcia R R, Choi W. 2004. Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J Geophys Res, 109: D03302Google Scholar
  21. Park M, Randel W J, Emmons L K, Bernath P F, Walker K A, Boone C D. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos Chem Phys, 8: 757–764CrossRefGoogle Scholar
  22. Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J Geophys Res, 111: D12314CrossRefGoogle Scholar
  23. Randel W J, Park M, Emmons L, Kinnison D, Bernath P, Walker K A, Boone C, Pumphrey H. 2010. Asian monsoon transport of pollution to the stratosphere. Science, 328: 611–613CrossRefGoogle Scholar
  24. Rosenlof K H, Tuck A F, Kelly K K, Russell Iii J M, McCormick M P. 1997. Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J Geophys Res, 102: 13213–13234CrossRefGoogle Scholar
  25. Schoeberl M R, Dessler A E. 2011. Dehydration of the stratosphere. Atmos Chem Phys, 11: 8433–8446CrossRefGoogle Scholar
  26. Tao S, Zhu F. 1964. The variation of 100 mb circulation over South Asia in summer and its association with march and withdraw of West Pacific Subtropical High. Acta Meteorol Sin, 34: 385–395Google Scholar
  27. Vernier J P, Thomason L W, Kar J. 2011. CALIPSO detection of an Asian tropopause aerosol layer. Geophys Res Lett, 38: L07804CrossRefGoogle Scholar
  28. Vernier J P, Fairlie T D, Natarajan M, Wienhold F G, Bian J, Martinsson B G, Crumeyrolle S, Thomason L W, Bedka K M. 2015. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J Geophys Res-Atmos, 120: 1608–1619CrossRefGoogle Scholar
  29. Vogel B, Günther G, Müller R, Grooß J U, Hoor P, Krämer M, Müller S, Zahn A, Riese M. 2014. Fast transport from Southeast Asia boundary layer sources to northern Europe: Rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone. Atmos Chem Phys, 14: 12745–12762CrossRefGoogle Scholar
  30. World Meteorological Organization (WMO). 1957. Meteorology–Threedimensional science: Second session of the commission for aerology. WMO Bull, 4: 134–138Google Scholar
  31. Wright J S, Fu R, Fueglistaler S, Liu Y S, Zhang Y. 2011. The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere. J Geophys Res, 116: D12302CrossRefGoogle Scholar
  32. Xie F, Li J P, Tian W S, Hu D, Zhang J, Shu J, Wang C. 2016. A quantitative estimation of the transport of surface emissions from different regions into the stratosphere. Sola, 12: 65–69CrossRefGoogle Scholar
  33. Yan R C, Bian J C. 2015. Tracing the boundary layer sources of carbon monoxide in the Asian summer monsoon anticyclone using WRF-Chem. Adv Atmos Sci, 32: 943–951CrossRefGoogle Scholar
  34. Yan R C, Bian J C, Fan Q J. 2011. The impact of the south Asia high bimodality on the chemical composition of the upper troposphere and lower stratosphere. Atmos Ocean Sci Lett, 4: 229–234CrossRefGoogle Scholar
  35. Zhang Q, Wu G X, Qian Y F. 2002. The bimodality of the 100 hPa south Asia high and its relationship to the climate anomaly over east Asia in summer. J Meteorol Soc Jpn, 80: 733–744CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations