Science China Earth Sciences

, Volume 60, Issue 7, pp 1310–1316 | Cite as

Oxygen cyclotron harmonic waves observed using Van Allen Probes

  • XiongDong Yu
  • ZhiGang Yuan
  • DeDong Wang
  • ShiYong Huang
  • HaiMeng Li
  • Tao Yu
  • Zheng Qiao
Research Paper

Abstract

Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere (L~5) off the magnetic equator (MLAT~−7.5°) during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density (PSD) peaks during 2–8 equatorial oxygen gyroharmonics (f ~ n\(f_{O^{+}}\), n=2–8), while the fundamental mode (n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles (approximately 40°–60°), which predominately increase as the harmonic number increases. Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.

Keywords

Oxygen cyclotron harmonic waves Van Allen Probes Ring current ions Radiation belt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson B J, Denton R E, Fuselier S A. 1996. On determining polarization characteristics of ion cyclotron wave magnetic field fluctuations. J Geophys Res, 101: 13195–13213CrossRefGoogle Scholar
  2. Bhatia K G, Lakhina G S. 1980. Proton-cyclotron instabilities in non-uniform loss-cone magnetospheric plasma. Astrophys Space Sci, 70: 467–481CrossRefGoogle Scholar
  3. Boardsen S A, Gallagher D L, Gurnett D A, Peterson W K, Green J L. 1992. Funnel-shaped, low-frequency equatorial waves. J Geophys Res, 97: 14967CrossRefGoogle Scholar
  4. Chaston C C, Bonnell J W, Mc Fadden J P, Ergun R E, Carlson C W. 2002. Electromagnetic ion cyclotron waves at proton cyclotron harmonics. J Geophys Res, 107: 1351CrossRefGoogle Scholar
  5. Chen L, Thorne R M, Jordanova V K, Horne R B. 2010. Global simulation of magnetosonic wave instability in the storm time magnetosphere. J Geophys Res, 115: A11222CrossRefGoogle Scholar
  6. Chen L, Thorne R M, Bortnik J. 2011. The controlling effect of ion temperature on EMIC wave excitation and scattering. Geophys Res Lett, 38: L16109Google Scholar
  7. Chen L, Thorne R M. 2012. Perpendicular propagation of magnetosonic waves. Geophys Res Lett, 39: L14102CrossRefGoogle Scholar
  8. Chen L, Thorne R M, Shprits Y, Ni B. 2013. An improved dispersion relation for parallel propagating electromagnetic waves in warm plasmas: Application to electron scattering. J Geophys Res-Space Phys, 118: 2185–2195CrossRefGoogle Scholar
  9. Denton R E, Engebretson M J, Keiling A, Walsh A P, Gary S P, Décréau P M E, Cattell C A, Rème H. 2010. Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis. J Geophys Res, 115: A12224Google Scholar
  10. Engebretson M J, Kahlstorf C R G, Posch J L, Keiling A, Walsh A P, Denton R E, Broughton M C, Owen C J, Fornaçon K H, Rème H. 2010. Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster. J Geophys Res, 115: A12225CrossRefGoogle Scholar
  11. Gary S P, Liu K, Winske D, Denton R E. 2010. Ion Bernstein instability in the terrestrial magnetosphere: Linear dispersion theory. J Geophys Res, 115: A12209CrossRefGoogle Scholar
  12. Gary S P, Liu K, Winske D. 2011. Bernstein instability driven by suprathermal protons in the ring current. J Geophys Res, 116: A08215CrossRefGoogle Scholar
  13. Greenspan M E, Hamilton D C. 2002. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum. J Geophys Res, 107: 1043CrossRefGoogle Scholar
  14. Gul’elmi A V, Klaine B I, Potapov A S. 1975. Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause. Planet Space Sci, 23: 279–286CrossRefGoogle Scholar
  15. Hamilton D C, Gloeckler G, Ipavich F M, Stüdemann W, Wilken B, Kremser G. 1988. Ring current development during the great geomagnetic storm of February 1986. J Geophys Res, 93: 14343–14355CrossRefGoogle Scholar
  16. Horne R B, Thorne R M, Glauert S A, Meredith N P, Pokhotelov D, Santolík O. 2007. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett, 34: L17107CrossRefGoogle Scholar
  17. Horne R B, Wheeler G V, Alleyne H S C K. 2000. Proton and electron heating by radially propagating fast magnetosonic waves. J Geophys Res, 105: 27597–27610CrossRefGoogle Scholar
  18. Kletzing C A, Kurth W S, Acuna M, Mac Dowall R J, Torbert R B, Averkamp T, Bodet D, Bounds S R, Chutter M, Connerney J, Crawford D, Dolan J S, Dvorsky R, Hospodarsky G B, Howard J, Jordanova V, Johnson R A, Kirchner D L, Mokrzycki B, Needell G, Odom J, Mark D, Pfaff R, Phillips J R, Piker C W, Remington S L, Rowland D, Santolik O, Schnurr R, Sheppard D, Smith C W, Thorne R M, Tyler J. 2013. The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci Rev, 179: 127–181CrossRefGoogle Scholar
  19. Kurth W S, De Pascuale S, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R. 2015. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. J Geophys Res-Space Phys, 120: 904–914CrossRefGoogle Scholar
  20. Lee J H, Chen L, Angelopoulos V, Thorne R M. 2012. THEMIS observations and modeling of multiple ion species and EMIC waves: Implications for a vanishing He+ stop band. J Geophys Res, 117: A06204CrossRefGoogle Scholar
  21. Liu H, Kokubun S, Hayashi K. 1994. Equatorial electromagnetic emission with discrete spectra near harmonics of oxygen gyrofrequency during magnetic storm. Geophys Res Lett, 21: 225–228CrossRefGoogle Scholar
  22. Mann G, Hackenberg P, Marsch E. 1997. Linear mode analysis in multi-ion plasmas. J Plasma Phys, 58: 205–221CrossRefGoogle Scholar
  23. Mauk B H, Fox N J, Kanekal S G, Kessel R L, Sibeck D G, Ukhorskiy A. 2013. Science objectives and rationale for the radiation belt storm probes mission. Space Sci Rev, 179: 3–27CrossRefGoogle Scholar
  24. Meredith N P, Horne R B, Anderson R R. 2008. Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere. J Geophys Res, 113: A06213CrossRefGoogle Scholar
  25. Perraut S, Roux A, Robert P, Gendrin R, Sauvaud J A, Bosqued J M, Kremser G, Korth A. 1982. A systematic study of ULF Waves Above FH+ from GEOS 1 and 2 Measurements and Their Relationships with proton ring distributions. J Geophys Res, 87: 6219–6236CrossRefGoogle Scholar
  26. Pokhotelov O A, Pokhotelov D O, Feygin F Z, Gladychev V A, Parrot M, Hayashi K, Kangas J, Mursula K. 1997. Oxygen cyclotron harmonic waves in the deep plasmasphere during magnetic storms. J Geophys Res, 102: 77–83CrossRefGoogle Scholar
  27. Posch J L, Engebretson M J, Olson C N, Thaller S A, Breneman A W, Wygant J R, Boardsen S A, Kletzing C A, Smith C W, Reeves G D. 2015. Low-harmonic magnetosonic waves observed by the Van Allen Probes. J Geophys Res-Space Phys, 120: 6230–6257CrossRefGoogle Scholar
  28. Russell C T, Holzer R E, Smith E J. 1970. OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial noise. J Geophys Res, 75: 755–768CrossRefGoogle Scholar
  29. Volwerk M, Nakamura R, Baumjohann W, Uozumi T, Yumoto K, Balogh A. 2008. Tailward propagation of Pi2 waves in the Earth’s magnetotail lobe. Ann Geophys, 26: 4023–4030CrossRefGoogle Scholar
  30. Wang D, Yuan Z, Yu X, Deng X, Zhou M, Huang S, Li H, Wang Z, Qiao Z, Kletzing C A, Wygant J R. 2015. Statistical characteristics of EMIC waves: Van Allen Probe observations. J Geophys Res-Space Phys, 120: 4400–4408CrossRefGoogle Scholar
  31. Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, Bale S D, Ludlam M, Turin P, Harvey P R, Hochmann R, Harps K, Dalton G, Mc Cauley J, Rachelson W, Gordon D, Donakowski B, Shultz C, Smith C, Diaz-Aguado M, Fischer J, Heavner S, Berg P, Malsapina D M, Bolton M K, Hudson M, Strangeway R J, Baker D N, Li X, Albert J, Foster J C, Chaston C C, Mann I, Donovan E, Cully C M, Cattell C A, Krasnoselskikh V, Kersten K, Brenneman A, Tao J B. 2013. The electric field and waves instruments on the radiation belt storm probes mission. Space Sci Rev, 179: 183–220CrossRefGoogle Scholar
  32. Yu X, Yuan Z, Wang D, Li H, Huang S, Wang Z, Zheng Q, Zhou M, Kletzing C A, Wygant J R. 2015. In situ observations of EMIC waves in O+ band by the Van Allen Probe A. Geophys Res Lett, 42: 1312–1317CrossRefGoogle Scholar
  33. Yuan Z, Xiong Y, Pang Y, Zhou M, Deng X, Trotignon J G, Lucek E, Wang J. 2012. Wave-particle interaction in a plasmaspheric plume observed by a Cluster satellite. J Geophys Res, 117: A03205Google Scholar
  34. Yuan Z, Li M, Xiong Y, Li H, Zhou M, Wang D, Huang S, Deng X, Wang J. 2013. Simultaneous observations of precipitating radiation belt electrons and ring current ions associated with the plasmaspheric plume. J Geophys Res-Space Phys, 118: 4391–4399CrossRefGoogle Scholar
  35. Yuan Z, Xiong Y, Huang S, Deng X, Pang Y, Zhou M, Dandouras I, Trotignon J G, Fazakerley A N, Lucek E. 2014. Cold electron heating by EMIC waves in the plasmaspheric plume with observations of the Cluster satellite. Geophys Res Lett, 41: 1830–1837CrossRefGoogle Scholar
  36. Yuan Z, Yu X, Wang D, Huang S, Li H, Yu T, Qiao Z, Wygant J R, Funsten H O. 2016. In situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions. J Geophys Res-Space Phys, 121: 6711–6717CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • XiongDong Yu
    • 1
  • ZhiGang Yuan
    • 1
  • DeDong Wang
    • 1
  • ShiYong Huang
    • 1
  • HaiMeng Li
    • 2
  • Tao Yu
    • 1
  • Zheng Qiao
    • 1
  1. 1.School of Electronic InformationWuhan UniversityWuhanChina
  2. 2.Institute of Space Science and TechnologyNanchang UniversityNanchangChina

Personalised recommendations