Advertisement

Science China Earth Sciences

, Volume 59, Issue 6, pp 1138–1156 | Cite as

Homologous temperature of olivine: Implications for creep of the upper mantle and fabric transitions in olivine

  • Qin Wang
Review Special Topic: Water in the Earth’s interior

Abstract

The homologues temperature of a crystalline material is defined as T/T m , where T is temperature and T m is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/T m of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/T m of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/T m of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/T m > 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/T m is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/T m of olivine need further investigation. Below 6.4 GPa (<200 km), T/T m of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12–10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/T m > 0.55–0.60. When T/T m < 0.55–0.60, [001] slip is easier and low T/T m favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/T m . Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.

Keywords

Olivine Homologous temperature Lattice preferred orientation Water Seismic anisotropy Upper mantle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaogi M, Ito E, Navrotsky A. 1989. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res, 94: 15671–15685CrossRefGoogle Scholar
  2. Akimoto S I, Komada E, Kushiro I. 1967. Effect of pressure on the melting of olivine and spinel polymorph of Fe2SiO4. J Geophys Res, 72: 679–686CrossRefGoogle Scholar
  3. Arndt N T. 2013. The formation and evolution of the continental crust. Geochem Perspectives, 2: 405–533CrossRefGoogle Scholar
  4. Ashby M F, Verrall R A. 1977. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Philos Trans R Soc A-Math Phys Eng Sci, 288: 59–95CrossRefGoogle Scholar
  5. Aubaud C, Hauri E H, Hirschmann M M. 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett, 31: L20611, doi: 10.1029/2004GL021341CrossRefGoogle Scholar
  6. Bai Q, Mackwell S J, Kohlstedt D L. 1991. High-temperature creep of olivine single crystals, 1. Mechanical results for buffered samples. J Geophys Res, 96: 2441–2460CrossRefGoogle Scholar
  7. Bell D R, Iginger P D, Rossman G R. 1995. Quantitative analysis of trace OH in garnet and pyroxene. Am Miner, 80: 465–474CrossRefGoogle Scholar
  8. Bell D R, Rossman G R, Maldener J, Endisch D, Rauch F. 2003. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res, 108: 2105, doi: 10.1029/2001JB000679Google Scholar
  9. Bell D R, Rossman G R. 1992. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397CrossRefGoogle Scholar
  10. Ben Ismaïl W, Barrol G, Mainprice D. 2001. The Kaapvaal craton seismic anisotropy: Petrological analyses of upper mantle kimberlite nodules. Geophys Res Lett, 28: 2497–2500CrossRefGoogle Scholar
  11. Ben Ismaïl W, Mainprice D. 1998. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 269: 145–157CrossRefGoogle Scholar
  12. Borch R S, Green H W. 1987. Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature, 330: 345–348CrossRefGoogle Scholar
  13. Boudier F, Nicolas A. 1995. Nature of the Moho transition zone in the Oman ophiolite. J Petrol, 36: 777–796CrossRefGoogle Scholar
  14. Bowen N L, Schairer J F. 1935. The system MgO-FeO-SiO2. Am J Sci, 29: 151–217CrossRefGoogle Scholar
  15. Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci, 36: 531–567CrossRefGoogle Scholar
  16. Bystricky M, Kunze K, Burlini L, Burg J P. 2000. High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 290: 1564–1567CrossRefGoogle Scholar
  17. Carter N L, Avé Lallemant H G. 1970. High temperature flow of dunite and peridotite. Geol Soc Am Bull, 81: 2181–2202CrossRefGoogle Scholar
  18. Christensen N I. 1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analysis of ultramafic tectonites. Geophys J Royal Astron Soc, 76: 89–111CrossRefGoogle Scholar
  19. Clos F, Gilio M, van Roermund H L M. 2014. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden. Lithos, 192-195: 8–20CrossRefGoogle Scholar
  20. Cordier P, Rubie D C. 2001. Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 309: 38–43CrossRefGoogle Scholar
  21. Couvy H, Frost D J, Heidelbach F, Nyilas K, Ungar T, Mackwell S, Cordier P. 2004. Shear deformation experiments of forsterite at 11 GPa-1400°C in the multianvil apparatus. Eur J Mineral, 16: 877–889CrossRefGoogle Scholar
  22. Davis B T C, England J L. 1964. The melting of forsterite up to 50 kilobars. J Geophys Res, 69: 1113–1116CrossRefGoogle Scholar
  23. Deuss A, Woodhouse J H. 2004. The nature of the Lehmann discontinuity from its seismological Clapeyron slopes. Earth Planet Sci Lett, 225: 295–304CrossRefGoogle Scholar
  24. Durinck J, Legris A, Cordier P. 2005. Pressure sensitivity of olivine slip systems: First-principle calculations of generalized stacking faults. Phys Chem Miner, 32: 646–654CrossRefGoogle Scholar
  25. Eaton D W, Darbyshire F, Evans R L, Grütter H, Jones A G, Yuan X H. 2009. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos, 109: 1–22CrossRefGoogle Scholar
  26. Elkins-Tanton L T, Hess P C, Parmentier E M. 2005. Possible formation of ancient crust on Mars through magma ocean processes. J Geophys Res, 110: E12, doi: 10.1029/2005JE002480CrossRefGoogle Scholar
  27. Evans B, Goetze C. 1979. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J Geophys Res, 84: 5505–5524CrossRefGoogle Scholar
  28. Fei H, Wiedenbeck M, Yamazaki D, Katsura T. 2013. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature, 498: 213–215CrossRefGoogle Scholar
  29. Frese K, Trommsdorf V, Kunze K. 2003. Olivine [100] normal to foliation: Lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Centre Apls). Contrib Mineral Petrol, 145: 73–86CrossRefGoogle Scholar
  30. Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Chin Sci Bull, 54: 3367–3378Google Scholar
  31. Green D H, Hibberson W O, Rosenthal A, Kovaca I, Yaxley G M, Falloon T J, Brink F. 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol, 55: 2067–2096CrossRefGoogle Scholar
  32. Green H W, Houston H. 1995. The mechanics of deep earthquakes. Annu Rev Earth Planet Sci, 23: 169–213CrossRefGoogle Scholar
  33. Griffin W L, Belousova E A, O’Neill C, O’Reilly S Y, Malkovets V, Pearson N J, Spetsius S, Wilde S A. 2014. The world turns over: Hadean- Archean crust-mantle evolution. Lithos, 189: 2–15CrossRefGoogle Scholar
  34. Griffin W L, O’Reilly S Y, Abe N, Aulbach S, Davies R M, Pearson N J, Doyle B J, Kivi K. 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Res, 127: 19–41CrossRefGoogle Scholar
  35. Grimm R E. 2013. Geophysical constraints on the lunar Procellarum KREEP Terrane. J Geophys Res Planets, 118: 768–777CrossRefGoogle Scholar
  36. Hansen L N, Zimmerman M E, Kohlstedt D L. 2011. Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographicpreferred orientation. J Geophys Res, 116: B08201. doi: 10.1029/2011JB008220Google Scholar
  37. Hirschmann M M, Tenner T, Aubaud C, Withers A C. 2009. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys Earth Planet Int, 176: 54–68CrossRefGoogle Scholar
  38. Hirschmann M M. 2000. Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst, 1: 1042–1067, doi: 10.1029/2000GC000070CrossRefGoogle Scholar
  39. Hirschmann M M. 2006. Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci, 34: 62–653CrossRefGoogle Scholar
  40. Hirth G, Kohlstedt D L. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J E, ed. Inside the Subduction Factory. Washington DC: American Geophysical Union. 83–105CrossRefGoogle Scholar
  41. Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93–108CrossRefGoogle Scholar
  42. Holtzman B K, Kohlstedt D L, Zimmerman M E, Heidelbach F, Hiraga T, Hustoft J. 2003. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301: 1227–1230CrossRefGoogle Scholar
  43. Hsu L C. 1967. Melting of fayalite up to 40 kilobars. J Geophys Res, 72: 4235–4244CrossRefGoogle Scholar
  44. Jaupart C, Mareschal J C. 1999. The thermal structure and thickness of continental roots. Lithos, 48: 93–114CrossRefGoogle Scholar
  45. Jin D, Karato S, Obata M. 1998. Mechanisms of shear localization in the continental lithosphere: Inference from the deformation microstructures of peridotites from the Ivrea zone, northern Italy. J Struct Geol, 20: 195–209CrossRefGoogle Scholar
  46. Jin Z M, Green II H W, Borch R S. 1989. Microstructures of olivine and stresses in the upper mantle beneath Eastern China. Tectonophysics, 169: 23–50CrossRefGoogle Scholar
  47. Jung H, Karato S. 2001. Water-induced fabric transitions in olivine. Science, 293: 1460–1463CrossRefGoogle Scholar
  48. Jung H, Katayama I, Jiang Z, Hiraga T, Karato S. 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421: 1–22CrossRefGoogle Scholar
  49. Jung H, Lee J, Ko B, Jung S, Park M, Cao Y, Song S, 2013. Natural type-C olivine fabrics in garnet peridotites in North Qaidam UHP collision belt, NW China. Tectonophysics, 594: 91–102CrossRefGoogle Scholar
  50. Jung H, Mo W, Green H W. 2009. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nature Geosci, 2: 73–77CrossRefGoogle Scholar
  51. Kameyama M, Yuan D A, Karato S. 1999. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet Sci Lett, 168: 159–172CrossRefGoogle Scholar
  52. Karato S, Jung H, Katayama I, Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu Rev Earth Planet Sci, 36: 59–95CrossRefGoogle Scholar
  53. Karato S, Jung H. 2003. Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Philos Mag A, 83: 401–414CrossRefGoogle Scholar
  54. Karato S, Paterson M S, Fitzgerald J D. 1986. Rheology of synthetic olivine aggregates: Influence of grain size and water. J Geophys Res, 91: 8151–8176CrossRefGoogle Scholar
  55. Karato S, Rubie D, Yan H. 1993. Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion. J Geophys Res, 98: 9761–9768CrossRefGoogle Scholar
  56. Karato S, Toriumi M, Fujii T. 1980. Dynamic recrystallization of olivine single crystals during high temperature creep. Geophys Res Lett, 7: 649–652CrossRefGoogle Scholar
  57. Karato S. 1992. On the Lehman discontinuity. Geophys Res Lett, 19: 2255–2258CrossRefGoogle Scholar
  58. Katayama I, Jung H, Karato S. 2004. New type of olivine fabric at modest water content and low stress. Geology, 32: 1045–1048CrossRefGoogle Scholar
  59. Katayama I, Karato S, Brandon M. 2005. Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 33: 613–616CrossRefGoogle Scholar
  60. Katayama I, Karato S. 2006. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys Earth Planet Inter, 157: 33–45CrossRefGoogle Scholar
  61. Katsura T, Ito E. 1989. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res, 94: 15663–15670CrossRefGoogle Scholar
  62. Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter M J, Ito E, Funakoshi K. 2004. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res, 109: B02209, doi: 10.1029/2003JB002438CrossRefGoogle Scholar
  63. Kawazoe T, Karato S, Otsuka K, Jing Z, Mookherjee M. 2009. Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys Earth Planet Inter, 174: 128–137CrossRefGoogle Scholar
  64. Khan A, Connolly J A D, Maclennan J, Mosegaard K. 2007. Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int, 168: 243–258CrossRefGoogle Scholar
  65. Koeppen W C, Hamilton V E. 2008. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J Geophys Res, 113: E05001, doi: 10.1029/2007JE002984CrossRefGoogle Scholar
  66. Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol, 123: 345–357CrossRefGoogle Scholar
  67. Kohlstedt D L, Mackwell S J. 1998. Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem, 207: 147–162CrossRefGoogle Scholar
  68. Kohlstedt D L. 2006. The role of water in high-temperature rock deformation. Rev Mineral Geochem, 62: 377–396CrossRefGoogle Scholar
  69. Kojitani H, Akaogi M. 1997. Melting enthalpies of mantle peridotite: Calorimetric determinations in the system CaO-MgO-Al2O3-SiO2 and application to magma generation. Earth Planet Sci Lett, 153: 209–222CrossRefGoogle Scholar
  70. Korenaga J, Karato S. 2008. A new analysis of experimental data on olivine rheology. J Geophys Res, 113: B02403, doi: 10.1029/2007JB005100CrossRefGoogle Scholar
  71. Lee J, Jung H. 2015. Lattice-preferred orientation of olivine found in diamond- bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy. J Struct Geol, 70: 12–22CrossRefGoogle Scholar
  72. Li L, Raterron P, Weidner D, Chen J. 2003. Olivine flow mechanism at 8 GPa. Phys Earth Planet Inter, 138: 113–129CrossRefGoogle Scholar
  73. Li L. 2009. Studies of mineral properties at mantle condition using deformation multi-anvil apparatus. Prog Nat Sci, 19: 1467–1475CrossRefGoogle Scholar
  74. Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett, 297: 341–354CrossRefGoogle Scholar
  75. Mainprice D, Tommasi A, Couvy H, Cordier P, Frost D J. 2005. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature, 433: 731–733CrossRefGoogle Scholar
  76. Mei S, Kohlstedt D L. 2000a. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res, 105: 21457–21469CrossRefGoogle Scholar
  77. Mei S, Kohlstedt D L. 2000b. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res, 105: 21471–21481CrossRefGoogle Scholar
  78. Miyazaki T, Sueyoshi K, Hiraga T. 2013. Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature, 502: 321–326CrossRefGoogle Scholar
  79. Mizukami T, Wallis S R, Yarnamoto J. 2004. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427: 432–436CrossRefGoogle Scholar
  80. Mosenfelder J L, Deligne N I, Asimow P D, Rossman G. 2006. Hydrogen incorporation in olivine from 2–12 GPa. Am Miner, 91: 285–294CrossRefGoogle Scholar
  81. Nicolas A, Boudier F, Boullier A M. 1973. Mechanisms of flow in naturally and experimentally deformed peridotites. Am J Sci, 273: 853–876CrossRefGoogle Scholar
  82. O’Reilly S Y, Griffin W L. 2006. Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophysics, 416: 289–319CrossRefGoogle Scholar
  83. Ody A, Poulet F, Bibring J P, Loizeau D, Carter J, Gondet B, Langevin Y. 2013. Global investigation of olivine on Mars: Insights into crust and mantle compositions. J Geophys Res Planets, 118: 234–262CrossRefGoogle Scholar
  84. Ohtani E, Moriwaki K, Kato T, Onuma K. 1998. Melting and crystal-liquid partitioning in the system Mg2SiO4-Fe2SiO4 to 25 GPa. Phys Earth Planet Inter, 107: 75–82CrossRefGoogle Scholar
  85. Ohtani E. 1979. Melting relation of Fe2SiO4 up to about 200 kbar. J Phys Earth, 27: 189–208CrossRefGoogle Scholar
  86. Ohuchi T, Irifune T. 2013. Development of A-type olivine fabric in water- rich deep upper mantle. Earth Planet Sci Lett, 362: 20–30CrossRefGoogle Scholar
  87. Ohuchi T, Kawazoe T, Nishihara Y, Nishiyama N, Irifune T. 2011. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth Planet Sci Lett, 304: 55–63CrossRefGoogle Scholar
  88. Ohuchi T, Kawazoe T, Nishiyama N, Nishihara Y, Irifune T. 2010. Technical development of simple shear deformation experiments using a deformation-DIA apparatus. J Earth Sci, 21: 523–531CrossRefGoogle Scholar
  89. Ohuchi T, Nishihara Y, Kawazoe T, Spengler D, Shiraishi R, Suzuki A, Kikegawa T, Ohtani E. 2012. Superplasticity in hydrous melt-bearing dunite: Implications for shear localization in Earth’s upper mantle. Earth Planet Sci Lett, 335-336: 59–71CrossRefGoogle Scholar
  90. Park J, Levin V. 2002. Seismic anisotropy: Tracing plate dynamics in the mantle. Science, 296: 485–489CrossRefGoogle Scholar
  91. Paterson M S. 1982. The determination of hydroxyl by infrared absorption in quartz silicate glasses and similar materials. Bull Mineral, 105: 20–29Google Scholar
  92. Paterson M S, Olgaard D L. 2000. Rock deformation tests to large shear strains in torsion. J Struct Geol, 22: 1341–1358CrossRefGoogle Scholar
  93. Paterson M S. 1990. Rock deformation experimentation. In: Duba A G, Durham W B, Handin J W, Wang H F, eds. The Brittle-Ductile Transition in Rocks. Washington DC: AGU. 187–194CrossRefGoogle Scholar
  94. Peacock S M. 2003. Thermal structure and metamorphic evolution of subduction slabs. In: Eiler J, ed. Inside the Subduction Factory. Washington DC: AGU Geophysical Monograph. 7–22CrossRefGoogle Scholar
  95. Peslier A H, Woodland A B, Bell D R, Lazarov M. 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81CrossRefGoogle Scholar
  96. Peslier A H. 2010. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res, 197: 239–258CrossRefGoogle Scholar
  97. Pitzer K S, Sterner S M. 1994. Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J Chem Phys, 101: 3111–3116CrossRefGoogle Scholar
  98. Précigout J, Hirth G. 2014. B-type olivine fabric induced by gain boundary sliding. Earth Planet Sci Lett, 395: 231–240CrossRefGoogle Scholar
  99. Presnall D C, Walter M J. 1993. Melting of forsterite, Mg2SiO4, from 9.7 to 16.5 GPa. J GeophysRes, 98: 19777–19783CrossRefGoogle Scholar
  100. Presnall D C. 1995. Phase diagrams of Earth-forming minerals. In: Thomas J A, ed. Mineral Physics and Crystallography: A Handbook of Physical Constants. Washington DC: AGU Reference Shelf 2. 248–268CrossRefGoogle Scholar
  101. Raterron P, Amiguet E, Chen J, Li L, Cordier P. 2009. Experimental deformation of olivine single crystals at mantle pressures and temperatures. Phys Earth Planet Inter, 172: 74–83CrossRefGoogle Scholar
  102. Raterron P, Chen J, Li L, Weidner D, Cordier P. 2007. Pressure-induced slip system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. Am Miner, 92: 1436–1445CrossRefGoogle Scholar
  103. Raterron P, Wu Y, Weidner D J, Chen J. 2004. Low-temperature olivine rheology at high pressure. Phys Earth Planet Inter, 145: 149–159CrossRefGoogle Scholar
  104. Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys, 37: 65–106CrossRefGoogle Scholar
  105. Sawaguchi T. 2004. Deformation history and exhumation process of the Horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379: 109–126CrossRefGoogle Scholar
  106. Skemer P, Katayama I, Karato S. 2006. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: Evidence of deformation at low temperatures in the presence of water. Contrib Mineral Petrol, 152: 43–51CrossRefGoogle Scholar
  107. Stixrude L, Lithgow-Bertelloni C. 2007. Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett, 263: 45–55CrossRefGoogle Scholar
  108. Stixrude L. 1997. Structure and sharpness of phase transitions and mantle discontinuities. J Geophys Res, 102: 14835–14852CrossRefGoogle Scholar
  109. Tommasi A, Vauchez A, Ionov D A. 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett, 272: 65–77CrossRefGoogle Scholar
  110. van der Wal D, Chopra P N, Drury M, Fitz Gerald J D. 1993. Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophy Res Lett, 20: 1479–1482CrossRefGoogle Scholar
  111. Wang Q, Xia Q K, O’Reilly S Y, Griffin G L, Beyer E E, Brueckner H K. 2013b. Pressure- and stress-induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): Implications for mantle seismic anisotropy. J Metamorph Geol, 31: 91–111Google Scholar
  112. Wang Q. 2010. A review of water contents and ductile deformation mechanisms of olivine: Implications for the lithosphere-asthenosphere boundary of continents. Lithos, 120: 30–41CrossRefGoogle Scholar
  113. Wang Y F, Zhang J F, Shi F. 2013a. The origin and geophysical implications of a weak C-type olivine fabric in the Xugou ultra-high pressure garnet peridotite. Earth Planet Sci Lett, 376: 63–73CrossRefGoogle Scholar
  114. Weertman J. 1978. Creep laws for the mantle of the Earth. Philos Trans R Soc A-Math Phys Eng Sci, 288: 9–26CrossRefGoogle Scholar
  115. Wüstefel A, Bokelmann G, Barruol G, Montagner J P. 2009. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys Earth Planet Inter, 176: 198–212CrossRefGoogle Scholar
  116. Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 54: 3379–3396Google Scholar
  117. Xu Z Q, Wang Q, Ji S C, Chen J, Zeng L S, Yang J S, Chen F Y, LiangF H, Wenk H R. 2006. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 421: 111–127CrossRefGoogle Scholar
  118. Yagi T, Akaogi M, Shimomura O, Suzuki T, Akimoto S. 1987. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res, 92: 6207–6213CrossRefGoogle Scholar
  119. Zhang H F. 2009. Peridotite-melt interaction: A key point for destruction of cratonic lithospheric mantle. Chin Sci Bull, 54: 3417–3437Google Scholar
  120. Zhang J F, Green H W, Bozhilov K N, Jin Z M. 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633–636CrossRefGoogle Scholar
  121. Zhang J F, Wang C, Wang Y F. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91–99CrossRefGoogle Scholar
  122. Zhang S, Karato S, Gerald J F, Faul U H, Zhou Y. 2000. Simple shear deformation of olivine aggregates. Tectonophysics, 316: 133–152CrossRefGoogle Scholar
  123. Zhao Y H, Ginsberg S B, Kohlstedt D L. 2004. Solubility of hydrogen in olivine: Dependence on temperature and iron content. Contrib Mineral Petrol, 147: 155–161CrossRefGoogle Scholar
  124. Zhao Y H, Li X F, Li Y, Zimmerman M, Kohlstedt D L. 2007. Experimental study of high temperature and high pressure of fayalite. Acta Petrol Sin, 23: 2927–2932Google Scholar
  125. Zhao Y H, Shi X, Zimmerman M, Kohlstedt D L. 2006. Effect of water on the rheology of iron rich olivine. Acta Petrol Sin, 22: 2381–2386Google Scholar
  126. Zhao Y H, Zimmerman M E, Kohlstedt D L. 2009. Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions. Earth Planet Sci Lett, 287: 229–240CrossRefGoogle Scholar
  127. Zheng Y F, Xia Q K, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and EngineeringNanjing UniversityNanjingChina

Personalised recommendations