Science China Earth Sciences

, Volume 59, Issue 10, pp 1899–1911 | Cite as

Climate change and global cycling of persistent organic pollutants: A critical review

  • XiaoPing WangEmail author
  • DianChao Sun
  • TanDong Yao


Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants (POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.


Global and regional warming POPs Primary and secondary emission Global cycling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker S, Halsall C J, Tych W, Hung H, Attewell S, Blanchard P, Li H, Fellin P, Stern G, Billeck B. 2006. Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. Environ Sci Technol, 40: 3217–3222CrossRefGoogle Scholar
  2. Bettinetti R, Quadroni S, Galassi S, Bacchetta R, Bonardi L, Vailati G. 2008. Is meltwater from Alpine glaciers a secondary DDT source for lakes? Chemosphere, 73: 1027–1031CrossRefGoogle Scholar
  3. Bidleman T F. 1999. Atmospheric Transport and Air-Surface Exchange of Pesticides, Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment. Amsterdam: Springer Netherlands. 115–166CrossRefGoogle Scholar
  4. Blais J M, Schindler D W, Muir D C, Sharp M, Donald D, Lafreniere M, Braekevelt E, Strachan W M. 2001. Melting glaciers: A major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio, 30: 410–415CrossRefGoogle Scholar
  5. Blais J. 2005. Biogeochemistry of persistent bioaccumulative toxicants: Processes affecting the transport of contaminants to remote areas. Can J Fish Aquat Sci, 62: 236–243CrossRefGoogle Scholar
  6. Bogdal C, Schmid P, Zennegg M, Anselmetti F S, Scheringer M, Hungerbuhler K. 2009. Blast from the past: Melting glaciers as a relevant source for persistent organic pollutants. Environ Sci Technol, 43: 8173–8177CrossRefGoogle Scholar
  7. Borgå K, Saloranta T M, Ruus A. 2010. Simulating climate change-induced alterations in bioaccumulation of organic contaminants in an Arctic marine food web. Environ Toxicol Chem, 29: 1349–1357CrossRefGoogle Scholar
  8. Botkin D B, Saxe H, Araujo M B, Betts R, Bradshaw R H, Cedhagen T, Chesson P, Dawson T P, Etterson J R, Faith D P. 2007. Forecasting the effects of global warming on biodiversity. Bioscience, 57: 227–236CrossRefGoogle Scholar
  9. Brander K M. 2007. Global fish production and climate change. Proc Natl Acad Sci USA, 104: 19709–19714CrossRefGoogle Scholar
  10. Bridgman H A. 1991. Global air Pollution: Problems for the 1990’s. Devon: Belhaven PressGoogle Scholar
  11. Broomhall S. 2002. The effects of endosulfan and variable water temperature on survivorship and subsequent vulnerability to predation in Litoria citropa tadpoles. Aquat Toxicol, 61: 243–250CrossRefGoogle Scholar
  12. Broomhall S D. 2004. Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog. J Appl Ecol, 41: 105–113CrossRefGoogle Scholar
  13. Brubaker W W, Hites R A. 1998. OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J Phys Chem A, 102: 915–921CrossRefGoogle Scholar
  14. Buchwalter D B, Jenkins J J, Curtis L R. 2003. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies. Environm Toxicol Chem, 22: 2806–2812CrossRefGoogle Scholar
  15. Burek K A, Gulland F M, O’Hara T M. 2008. Effects of climate change on Arctic marine mammal health. Ecol Appl, 18: 126–134CrossRefGoogle Scholar
  16. Bustnes J O, Yoccoz N G, Bangjord G, Herzke D, Ahrens L, Skaare J U. 2011. Impacts of climate and feeding conditions on the annual accumulation (1986–2009) of persistent organic pollutants in a terrestrial raptor. Environ Sci Technol, 45: 7542–7547CrossRefGoogle Scholar
  17. Cabrerizo A, Dachs J, Moeckel C, Ojeda M J, Caballero G, Barceló D, Jones K C. 2011. Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environ Sci Technol, 45: 4785–4792CrossRefGoogle Scholar
  18. Cao M, Woodward F I. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393: 249–252CrossRefGoogle Scholar
  19. Capkin E, Altinok I, Karahan S. 2006. Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere, 64: 1793–1800CrossRefGoogle Scholar
  20. Castro-Jiménez J, Berrojalbiz N, Wollgast J, Dachs J. 2012. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ Pollut, 166: 40–47CrossRefGoogle Scholar
  21. Channa K, Röllin H B, Nøst T H, Odland J Ø, Sandanger T M. 2012. Prenatal exposure to DDT in malaria endemic region following indoor residual spraying and in non-malaria coastal regions of South Africa. Sci Total Environ, 429: 183–190CrossRefGoogle Scholar
  22. Chen C, Wang T, Naile J E, Li J, Geng J, Bi C, Hu W, Zhang X, Khim J S, Feng Y. 2011. Perfluorinated compounds in aquatic products from Bohai Bay, Tianjin, China. Hum Ecol Risk Assess, 17: 1279–1291CrossRefGoogle Scholar
  23. Christoudias T, Pozzer A, Lelieveld J. 2012. Influence of the North Atlantic oscillation on air pollution transport. Atmos Chem Phy, 12: 869–877CrossRefGoogle Scholar
  24. Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184–187CrossRefGoogle Scholar
  25. Cheng C S, Campbell M, Li Q, Li G, Auld H, Day N, Pengelly D, Gingrich S, Yap D. 2007. A synoptic climatological approach to assess climatic impact on air quality in south-central Canada. Part II: Future estimates. Water Air Soil Pollut, 182: 117–130Google Scholar
  26. Dachs J, Bayona J M, Ittekkot V, Albaigés J. 1999. Monsoon-driven vertical fluxes of organic pollutants in the western Arabian Sea. Environ Sci Technol, 33: 3949–3956CrossRefGoogle Scholar
  27. Dachs J, Eisenreich S J, Hoff R M. 2000. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants. Environ Sci Technol, 34: 1095–1102CrossRefGoogle Scholar
  28. Dachs J, Lohmann R, Ockenden W A, Méjanelle L, Eisenreich S J, Jones K C. 2002. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ Sci Technol, 36: 4229–4237CrossRefGoogle Scholar
  29. Dalla Valle M, Jurado E, Dachs J, Sweetman A J, Jones K C. 2005. The maximum reservoir capacity of soils for persistent organic pollutants: Implications for global cycling. Environ Pollut, 134: 153–164CrossRefGoogle Scholar
  30. Dalla Valle M, Codato E, Marcomini A. 2007. Climate change influence on POPs distribution and fate: A case study. Chemosphere, 67: 1287–1295CrossRefGoogle Scholar
  31. Easterling D R, Meehl G A, Parmesan C, Changnon S A, Karl T R, Mearns L O. 2000. Climate extremes: Observations, modeling, and impacts. Science, 289: 2068–2074CrossRefGoogle Scholar
  32. Evans M S, Muir D, Lockhart W L, Stern G, Ryan M, Roach P. 2005. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: An overview. Sci Total Environ, 351: 94–147CrossRefGoogle Scholar
  33. Fernández P, Grimalt J O. 2003. On the global distribution of persistent organic pollutants. Chimia Int J Chem, 57: 514–521CrossRefGoogle Scholar
  34. Frierson D M, Hwang Y T. 2012. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J Clim, 25: 720–733CrossRefGoogle Scholar
  35. Gao H, Ma J, Cao Z, Dove A, Zhang L. 2010. Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes. J Geophys Res, 115: D15307CrossRefGoogle Scholar
  36. Galbán-Malagón C, Berrojalbiz N, Ojeda M J, Dachs J. 2012. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun, 3: 862CrossRefGoogle Scholar
  37. Geisz H N, Dickhut R M, Cochran M A, Fraser W R, Ducklow H W. 2008. Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem. Environ Sci Technol, 42: 3958–3962CrossRefGoogle Scholar
  38. Gómez-Gutiérrez A, Garnacho E, Bayona J M, Albaigés J. 2007. Assessment of the Mediterranean sediments contamination by persistent organic pollutants. Environ Pollut, 148: 396–408CrossRefGoogle Scholar
  39. Giesy J P, Kannan K. 2002. Peer reviewed: Perfluorochemical surfactants in the environment. Environ Sci Technol, 36: 146–152CrossRefGoogle Scholar
  40. Githeko A K, Lindsay S W, Confalonieri U E, Patz J A. 2000. Climate change and vector-borne diseases: A regional analysis. B World Health Organ, 78: 1136–1147Google Scholar
  41. Gouin T, Mackay D, Jones K C, Harner T, Meijer S N. 2004. Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ Pollut, 128: 139–148CrossRefGoogle Scholar
  42. Gouin T, Armitage J M, Cousins I T, Muir D C, Ng C A, Reid L, Tao S. 2013. Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environ Toxicol Chem, 32: 20–31CrossRefGoogle Scholar
  43. Grannas A, Bogdal C, Hageman K, Halsall C, Harner T, Hung H, Kallenborn R, Klán P, Klánová J, Macdonald R. 2013. The role of the global cryosphere in the fate of organic contaminants. Atmosph Chem Phys, 13: 3271–3305CrossRefGoogle Scholar
  44. Guan B J 2003. The present situation and analysis of world forest resources (in Chinese). World Forest Res, 16: 1–5Google Scholar
  45. Guglielmo F, Lammel G, Maier-Reimer E. 2009. Global environmental cycling of γ-HCH and DDT in the 1980s–A study using a coupled atmosphere and ocean general circulation model. Chemosphere, 76: 1509–1517CrossRefGoogle Scholar
  46. Guglielmo F, Stemmler I, Lammel G. 2012. The impact of organochlorines cycling in the cryosphere on their global distribution and fate–1. Sea ice. Environ Pollut, 162: 475–481CrossRefGoogle Scholar
  47. Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699CrossRefGoogle Scholar
  48. Hermanson M H, Isaksson E, Teixeira C, Muir D C, Compher K M, Li Y, Igarashi M, Kamiyama K 2005. Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway. Environ Sci Technol, 39: 8163–8169CrossRefGoogle Scholar
  49. Hermanson M H, Isaksson E, Forsstrom S, Teixeira C, Muir D C, Pohjola V A, Van de Wal R S. 2010. Deposition history of brominated flame retardant compounds in an ice core from Holtedahlfonna, Svalbard, Norway. Environ Sci Technol, 44: 7405–7410CrossRefGoogle Scholar
  50. Hirano T, Ishida T, Oh K, Sudo R. 2007. Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere, 67: 428–434CrossRefGoogle Scholar
  51. Hoegh-Guldberg O, Bruno J F. 2010. The impact of climate change on the world’s marine ecosystems. Science, 328: 1523–1528CrossRefGoogle Scholar
  52. Hofmann L, Stemmler I, Lammel G. 2012. The impact of organochlorines cycling in the cryosphere on global distributions and fate–2. Land ice and temporary snow cover. Environ Pollut, 162: 482–488Google Scholar
  53. Hogrefe C, Lynn B, Civerolo K, Ku J Y, Rosenthal J, Rosenzweig C, Goldberg R, Gaffin S, Knowlton K, Kinney P. 2004. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J Geophys Res, 109: D22301CrossRefGoogle Scholar
  54. Holoubek I, Klanova J, Jarkovský J, Kohoutek J. 2007. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Part I. Ambient air and wet deposition 1996–2005. J Environm Monit, 9: 557–563Google Scholar
  55. Hong S, Lee K, Hou S, Hur S D, Ren J, Burn L J, Rosman K J, Barbante C, Boutron C F. 2009. An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas. Environ Sci Technol, 43: 8060–8065CrossRefGoogle Scholar
  56. Horstmann M, Mclachlan M S. 1998. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ, 32: 1799–1809CrossRefGoogle Scholar
  57. Huang P, Gong S, Zhao T, Neary L, Barrie L. 2007. GEM/POPs: A global 3-D dynamic model for semi-volatile persistent organic pollutants–Part 2: Global transports and budgets of PCBs. Atmos Chem Phys, 7: 4015–4025CrossRefGoogle Scholar
  58. Huang Y, Xu Y, Li J, Xu W, Zhang G, Cheng Z, Liu J, Wang Y, Tian C. 2013. Organochlorine pesticides in the atmosphere and surface water from the equatorial Indian Ocean: Enantiomeric signatures, sources, and fate. Environ Sci Technol, 47: 13395–13403CrossRefGoogle Scholar
  59. Hughes L. 2000. Biological consequences of global warming: Is the signal already apparent? Trends Ecol Evol, 15: 56–61CrossRefGoogle Scholar
  60. Hung H, Blanchard P, Halsall C J, Bidleman T, Stern G, Fellin P, Muir D, Barrie L, Jantunen L, Helm P. 2005. Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: Results from a decade of monitoring. Sci Total Environ, 342: 119–144CrossRefGoogle Scholar
  61. Hung H, Kallenborn R, Breivik K, Su Y, Brorström-Lundén E, Olafsdottir K, Thorlacius J M, Leppänen S, Bossi R, Skov H. 2010. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci Total Environ, 408: 2854–2873CrossRefGoogle Scholar
  62. Huntington T G. 2006. Evidence for intensification of the global water cycle: Review and synthesis. J Hydrol, 319: 83–95CrossRefGoogle Scholar
  63. Ilyina T, Pohlmann T, Lammel G, Sündermann J. 2006. A fate and transport ocean model for persistent organic pollutants and its application to the North Sea. J Mar Syst, 63: 1–19CrossRefGoogle Scholar
  64. IPCC. 2013. Climate change 2013. In: Stocker T F, Qin D H, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Working Group I Contribution to the IPCC Fifth Assessment Report: The Physical Science Basis: Summary for Policymakers. Cambridge: Cambridge University Press. 1–28Google Scholar
  65. IPCC. 2014. Climate change 2014. In: Core Writing Team, Pachauri R K, Meyer L A, eds. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC. 151Google Scholar
  66. Jenssen B M. 2006. Endocrine-disrupting chemicals and climate change: A worst-case combination for arctic marine mammals and seabirds? Environ Health Perspect, 114: 76–80CrossRefGoogle Scholar
  67. Jones K C, De Voogt P. 1999. Persistent organic pollutants (POPs): State of the science. Environ Pollut, 100: 209–221CrossRefGoogle Scholar
  68. Jurado E, Jaward F, Lohmann R, Jones K C, Simó R, Dachs J. 2005. Wet deposition of persistent organic pollutants to the global oceans. Environ Sci Technol, 39: 2426–2435CrossRefGoogle Scholar
  69. Kallenborn R, Borgå K, Christensen J, Dowdall M, Evenset A, Odland J, Ruus A, Aspmo Pfaffhuber K, Pawlak J, Reiersen L. 2011. Combined effects of selected pollutants and climate change in the Arctic environment. In: Arctic Monitoring and Assessment Programme. OsloGoogle Scholar
  70. Kallenborn R, Halsall C, Dellong M, Carlsson P. 2012. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. J Environ Monit, 14: 2854–2869CrossRefGoogle Scholar
  71. Kallenborn R, Hung H, Brorström-Lundén E. 2015. Chapter 13-Atmospheric Long-Range Transport of Persistent Organic Pollutants (POPs) into Polar Regions. In: Eddy Y Z, ed. Comprehensive Analytical Chemistry, Persistent Organic Pollutants (POPs): Analytical Techniques, Environmental Fate and Biological Effects. Amsterdam: Elsevier. 411–432CrossRefGoogle Scholar
  72. Kawamoto K, Urano K. 1990. Parameters for predicting fate of organochlorine pesticides in the environment (III) Biodegradation rate constants. Chemosphere, 21: 1141–1152CrossRefGoogle Scholar
  73. Kim E J, Oh J E, Chang Y S. 2003. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci Total Environ, 311: 177–189CrossRefGoogle Scholar
  74. Klöpffer W. 1992. Photochemical degradation of pesticides and other chemicals in the environment: A critical assessment of the state of the art. Sci Total Environ, 123: 145–159CrossRefGoogle Scholar
  75. Komprda J í, Komprdová K r, Sánka M, Mozný M, Nizzetto L. 2013. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils. Environ Sci Technol, 47: 7052–7059Google Scholar
  76. Kong D, MacLeod M, Li Z, Cousins I T. 2013. Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. Chemosphere, 93: 2086–2093CrossRefGoogle Scholar
  77. Kong D, MacLeod M, Cousins I T. 2014. Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the Popcycling-Baltic model. Chemosphere, 110: 31–40CrossRefGoogle Scholar
  78. Kucklick J R, Hinckley D A, Bidleman T F. 1991. Determination of Henry’s law constants for hexachlorocyclohexanes in distilled water and artificial seawater as a function of temperature. Mar Chem, 34: 197–209CrossRefGoogle Scholar
  79. Kwok R, Cunningham G, Wensnahan M, Rigor I, Zwally H, Yi D. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res, 114: C07005CrossRefGoogle Scholar
  80. Lammel G, Stemmler I. 2012. Fractionation and current time trends of PCB congeners: Evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model. Atmos Chem Phys, 12: 7199–7213CrossRefGoogle Scholar
  81. Lamon L, Dalla Valle M, Critto A d, Marcomini A. 2009a. Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation. Environ Pollut, 157: 1971–1980CrossRefGoogle Scholar
  82. Lamon L, von Waldow H, MacLeod M, Scheringer M, Marcomini A, Hungerbuhler K. 2009b. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario. Environ Sci Technol, 43: 5818–5824CrossRefGoogle Scholar
  83. Lei Y D, Wania F. 2004. Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ, 38: 3557–3571CrossRefGoogle Scholar
  84. Lin T, Li J, Xu Y, Liu X, Luo C, Cheng H, Chen Y, Zhang G. 2012. Organochlorine pesticides in seawater and the surrounding atmosphere of the marginal seas of China: Spatial distribution, sources and air-water exchange. Sci Total Environ, 435: 244–252CrossRefGoogle Scholar
  85. Lindsay S, Birley M. 1996. Climate change and malaria transmission. Ann Trop Med Parasit, 90: 573–588Google Scholar
  86. Liu G R, Zheng M H. 2013. Progress in the studies associated with formation and emission of unintentionally produced persistent organic pollutants (in Chinese). Sci Sin Chim, 43: 265–278CrossRefGoogle Scholar
  87. Lohmann R, Jurado E, Pilson M E, Dachs J. 2006. Oceanic deep water formation as a sink of persistent organic pollutants. Geophys Res Lett, 33: L12607CrossRefGoogle Scholar
  88. Luo Y. 2007. Terrestrial carbon-cycle feedback to climate warming. Ann Rev Ecol Evolu Syst, 38: 683–712CrossRefGoogle Scholar
  89. Ma J, Venkatesh S, Jantunen L. 2003. Evidence of the impact of ENSO events on temporal trends of hexachlorobenzene air concentrations over the Great Lakes. Sci Total Environ, 313: 177–184CrossRefGoogle Scholar
  90. Ma J, Cao Z, Hung H. 2004. North Atlantic oscillation signatures in the atmospheric concentrations of persistent organic pollutants: An analysis using integrated atmospheric deposition network-Great Lakes monitoring data. J Geophys Res, 109: D12305CrossRefGoogle Scholar
  91. Ma J, Li Y F. 2006. Interannual variation of persistent organic pollutants over the Great Lakes induced by tropical Pacific sea surface temperature anomalies. J Geophys Res, 111: D04302CrossRefGoogle Scholar
  92. Ma J, Cao Z. 2010. Quantifying the perturbations of persistent organic pollutants induced by climate change. Environ Sci Technol, 44: 8567–8573CrossRefGoogle Scholar
  93. Ma J, Hung H, Tian C, Kallenborn R. 2011. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat Clim Change, 1: 255–260CrossRefGoogle Scholar
  94. Maldonado C, Bayona J M, Bodineau L. 1999. Sources, distribution, and water column processes of aliphatic and polycyclic aromatic hydrocarbons in the northwestern Black Sea water. Environ Sci Technol, 33: 2693–2702CrossRefGoogle Scholar
  95. Macdonald R W, Mackay D, Li Y F, Hickie B. 2003. How will global climate change affect risks from long-range transport of persistent organic pollutants? Hum Ecol Risk Assess, 9: 643–660CrossRefGoogle Scholar
  96. Macdonald R, Harner T, Fyfe J. 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ, 342: 5–86CrossRefGoogle Scholar
  97. Mackay D. 2001. Multimedia environmental models: The fugacity approach. Boca Raton: CRC PressCrossRefGoogle Scholar
  98. MacLeod M, Riley W J, Mckone T E. 2005. Assessing the influence of climate variability on atmospheric concentrations of polychlorinated biphenyls using a global-scale mass balance model (BETR-Global). Environ Sci Technol, 39: 6749–6756CrossRefGoogle Scholar
  99. Maggi V, Villa S, Finizio A, Delmonte B, Casati P, Marino F. 2006. Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers. Hydrobiologia, 562: 43–56CrossRefGoogle Scholar
  100. Magnuson J, Webster K, Assel R, Bowser C, Dillon P, Eaton J, Evans H, Fee E, Hall R, Mortsch L. 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian shield region. Hydrol Process, 11: 825–871CrossRefGoogle Scholar
  101. Martens W, Jetten T, Rotmans J, Niessen L. 1995. Climate change and vector-borne diseases: A global modelling perspective. Glob Environ Change, 5: 195–209CrossRefGoogle Scholar
  102. Maruya K A, Smalling K L, Vetter W. 2005. Temperature and congener structure affect the enantioselectivity of toxaphene elimination by fish. Environ Sci Technol, 39: 3999–4004CrossRefGoogle Scholar
  103. McLachlan M S, Horstmann M. 1998. Forests as filters of airborne organic pollutants: A model. Environ Sci Technol, 32: 413–420CrossRefGoogle Scholar
  104. Meehl G A, Washington W M, Collins W D, Arblaster J M, Hu A, Buja L E, Strand W G, Teng H. 2005. How much more global warming and sea level rise? Science, 307: 1769–1772CrossRefGoogle Scholar
  105. Meijer S, Ockenden W, Steinnes E, Corrigan B, Jones K. 2003. Spatial and temporal trends of POPs in Norwegian and UK background air: Implications for global cycling. Environ Sci Technol, 37: 454–461CrossRefGoogle Scholar
  106. Meinshausen M, Meinshausen N, Hare W, Raper S C, Frieler K, Knutti R, Frame D J, Allen M R. 2009. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458: 1158–1162CrossRefGoogle Scholar
  107. Mendelsohn R, Nordhaus W D, Shaw D. 1994. The impact of global warming on agriculture: A Ricardian analysis. Am Econ Rev, 84: 753–771Google Scholar
  108. Meyer T, Wania F. 2007. What environmental fate processes have the strongest influence on a completely persistent organic chemical’s accumulation in the Arctic? Atmos Environ, 41: 2757–2767CrossRefGoogle Scholar
  109. Meyer T, Wania F. 2008. Organic contaminant amplification during snowmelt. Water Res, 42: 1847–1865CrossRefGoogle Scholar
  110. Meyer T, Lei Y D, Muradi I, Wania F. 2008a. Organic contaminant release from melting snow. 1. Influence of chemical partitioning. Environ Sci Technol, 43: 657–662CrossRefGoogle Scholar
  111. Meyer T, Lei Y D, Muradi I, Wania F. 2008b. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics. Environ Sci Technol, 43: 663–668CrossRefGoogle Scholar
  112. Moeckel C, Nizzetto L, Strandberg B, Lindroth A, Jones K C. 2009. Air-Boreal forest transfer and processing of polychlorinated biphenyls. Environ Sci Technol, 43: 5282–5289CrossRefGoogle Scholar
  113. Nadal M, Marquès M, Mari M, Domingo J L. 2015. Climate change and environmental concentrations of POPs: A review. Environ Res, 143: 177–185CrossRefGoogle Scholar
  114. Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Guardo A D, Ghirardello D, Hansen K M, Jarvis A, Lindroth A. 2010. Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol, 44: 6526–6531CrossRefGoogle Scholar
  115. Noyes P D, McElwee M K, Miller H D, Clark B W, Van Tiem L A, Walcott K C, Erwin K N, Levin E D. 2009. The toxicology of climate change: Environmental contaminants in a warming world. Environ Int, 35: 971–986CrossRefGoogle Scholar
  116. O’Sullivan G, Megson D. 2014. Chapter 1-brief overview: Discovery, regulation, properties, and fate of POPs. In: Sandau G O S, ed. Environmental Forensics for Persistent Organic Pollutants. Amsterdam: Elsevier. 8–20Google Scholar
  117. Ockenden W A, Breivik K, Meijer S N, Steinnes E, Sweetman A J, Jones K C. 2003. The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environ Pollut, 121: 75–80CrossRefGoogle Scholar
  118. Octaviani M, Stemmler I, Lammel G, Graf H F. 2015. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environ Sci Technol, 49: 3593–3602CrossRefGoogle Scholar
  119. Olsen M, Callaghan T, Reist J, Reiersen L, Dahl-Jensen D, Granskog M, Goodison B, Hovelsrud G, Johansson M, Kallenborn R. 2011. The changing Arctic cryosphere and likely consequences: An overview. Ambio, 40: 111–118CrossRefGoogle Scholar
  120. Paasivirta J, Sinkkonen S, Mikkelson P, Rantio T, Wania F. 1999. Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperature. Chemosphere, 39: 811–832CrossRefGoogle Scholar
  121. Pacyna J M, Cousins I T, Halsall C, Rautio A, Pawlak J, Pacyna E G, Sundseth K, Wilson S, Munthe J. 2015. Impacts on human health in the Arctic owing to climate-induced changes in contaminant cycling-The EU ArcRisk project policy outcome. Environ Sci Pollut Res, 50: 200–213CrossRefGoogle Scholar
  122. Parmesan C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol, 13: 1860–1872CrossRefGoogle Scholar
  123. Parry M L, Ruttan V W. 1991. Climate change and world agriculture. Environ Sci Policy Sustain Dev, 33: 25–29CrossRefGoogle Scholar
  124. Parry M L. 2007. Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University PressGoogle Scholar
  125. Patra R W, Chapman J C, Lim R P, Gehrke P C. 2007. The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem, 26: 1454–1459CrossRefGoogle Scholar
  126. Petchey O L, McPhearson P T, Casey T M, Morin P J. 1999. Environmental warming alters food-web structure and ecosystem function. Nature, 402: 69–72CrossRefGoogle Scholar
  127. Peterle T J. 1969. DDT in Antarctic snow. Nature, 224: 620–625CrossRefGoogle Scholar
  128. Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436CrossRefGoogle Scholar
  129. Philander S, Gu D, Lambert G, Li T, Halpern D, Lau N, Pacanowski R. 1996. Why the ITCZ is mostly north of the equator. J Clim, 9: 2958–2972CrossRefGoogle Scholar
  130. Porter J, Parry M, Carter T. 1991. The potential effects of climatic change on agricultural insect pests. Agric For Meteorol, 57: 221–240CrossRefGoogle Scholar
  131. Racherla P N, Adams P J. 2006. Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J Geophys Res, 111: D24103CrossRefGoogle Scholar
  132. Roberts D R, Manguin S, Mouchet J. 2000. DDT house spraying and re-emerging malaria. Lancet, 356: 330–332CrossRefGoogle Scholar
  133. Rosenzweig C, Iglesias A, Yang X, Epstein P R, Chivian E. 2001. Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Glob Change Hum Health, 2: 90–104CrossRefGoogle Scholar
  134. Rühlemann C, Mulitza S, Müller P J, Wefer G, Zahn R. 1999. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402: 511–514CrossRefGoogle Scholar
  135. RůŽicková P, Klánová J, Cupr P, Lammel G, Holoubek I. 2007. An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environ Sci Technol, 42: 179–185CrossRefGoogle Scholar
  136. Sadasivaiah S, Tozan Y, Breman J G. 2007. Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: How can it be used for malaria control? Am J Trop Med Hyg, 77: 249–263Google Scholar
  137. Sarkar S, Bhattacharya B, Bhattacharya A, Chatterjee M, Alam A, Satpathy K, Jonathan M. 2008. Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: An overview. Environ Int, 34: 1062–1071CrossRefGoogle Scholar
  138. Schiedek D, Sundelin B, Readman J W, Macdonald R W. 2007. Interactions between climate change and contaminants. Mar Pollut Bull, 54: 1845–1856CrossRefGoogle Scholar
  139. Schindler D W, Curtis P J, Bayley S E, Parker B R, Beaty K G, Stainton M P. 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry, 36: 9–28CrossRefGoogle Scholar
  140. Schlenk D, Lavado R. 2011. Impacts of climate change on hypersaline conditions of estuaries and xenobiotic toxicity. Aquat Toxicol, 105: 78–82CrossRefGoogle Scholar
  141. Seinfeld J H, Pandis S N. 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken: John Wiley & Sons. 25Google Scholar
  142. Sharma S, Shukla R, Raghavendra K, Subbarao S K. 2005. Impact of DDT spraying on malaria transmission in Bareilly District, Uttar Pradesh, India. J Vector Borne Dise, 42: 54Google Scholar
  143. Sharma B M, Bharat G K, Tayal S, Nizzetto L, Čupr P, Larssen T. 2014. Environment and human exposure to persistent organic pollutants (POPs) in India: A systematic review of recent and historical data. Environ Int, 66: 48–64CrossRefGoogle Scholar
  144. Shen Y P, Wang G Y. 2013. Key findings and assessment results of IPCC WGI Fifth Assessment Report (in Chinese). J Glaciol Geocryol, 35: 1068–1076Google Scholar
  145. Sheng J, Wang X, Gong P, Joswiak D R, Tian L, Yao T, Jones K C. 2013. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study. Environ Sci Technol, 47: 3199–3208Google Scholar
  146. Shindell D, Chin M, Dentener F, Doherty R, Faluvegi G, Fiore A M, Hess P, Koch D, MacKenzie I, Sanderson M. 2008. A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys, 8: 5353–5372CrossRefGoogle Scholar
  147. Sinkkonen S, Paasivirta J. 2000. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere, 40: 943–949CrossRefGoogle Scholar
  148. Sobek A, Gustafsson O R. 2014. Deep water masses and sediments are main compartments for polychlorinated biphenyls in the Arctic Ocean. Environ Sci Technol, 48: 6719–6725CrossRefGoogle Scholar
  149. Stapleton D H. 2004. Lessons of history? Anti-malaria strategies of the international health board and the Rockefeller Foundation from the 1920s to the era of DDT. Public Health Rep, 119: 206Google Scholar
  150. Stemmler I, Lammel G. 2009. Cycling of DDT in the global environment 1950–2002: World ocean returns the pollutant. Geophys Res Lett, 36: L24602CrossRefGoogle Scholar
  151. Stemmler I, Lammel G. 2012. Long-term trends of continental-scale PCB patterns studied using a global atmosphere-ocean general circulation model. Environ Sci Pollut Res, 19: 1971–1980CrossRefGoogle Scholar
  152. Stevenson D, Dentener F, Schultz M, Ellingsen K, Van Noije T, Wild O, Zeng G, Amann M, Atherton C, Bell N. 2006. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res, 111: D08301CrossRefGoogle Scholar
  153. Stocker J, Scheringer M, Wegmann F, Hungerbühler K. 2007. Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds. Environ Sci Technol, 41: 6192–6198CrossRefGoogle Scholar
  154. Stocker T F. 2014. Climate change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University PressGoogle Scholar
  155. Suzuki N, Murasawa K, Sakurai T, Nansai K, Matsuhashi K, Moriguchi Y, Tanabe K, Kasugi O, Morita M. 2004. Geo-referenced multimedia environmental fate model (G-CIEMS): Model formulation and comparison to the generic model and monitoring approaches. Environ Sci Technol, 38: 5682–5693CrossRefGoogle Scholar
  156. Sweetman A J, Dalla Valle M, Prevedouros K, Jones K C. 2005. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data. Chemosphere, 60: 959–972CrossRefGoogle Scholar
  157. Theobald N, Caliebe C, Gerwinski W, Hühnerfuss H, Lepom P. 2011. Occurrence of perfluorinated organic acids in the North and Baltic seas. Part 1: Distribution in sea water. Environ Sci Pollut Res, 18: 1057–1069Google Scholar
  158. Thompson L G, Yao T, Davis M, Henderson K, Mosley-Thompson E, Lin P N, Beer J, Synal H A, Cole-Dai J, Bolzan J. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825CrossRefGoogle Scholar
  159. Thompson L G, Mosley-Thompson E, Davis M E, Lin P N, Henderson K, Mashiotta T A. 2003. Tropical Glacier and Ice Core Evidence of Climate Change on Annual to Millennial Time Scales, Climate Variability and Change in High Elevation Regions: Past, Present & Future. Amsterdam: Springer Netherlands. 137–155Google Scholar
  160. Tian C, Ma J, Chen Y, Liu L, Ma W, Li Y F. 2012. Assessing and forecasting atmospheric outflow of α-HCH from China on intra-, inter-, and decadal time scales. Environ Sci Technol, 46: 2220–2227CrossRefGoogle Scholar
  161. UNEP. 2010. Climate change and POPs: Predicting the impacts. Report of the UNEP/AMAP expert group. United Nations Environmental Programme Report. 65Google Scholar
  162. Veillette J, Muir D C, Antoniades D, Small J M, Spencer C, Loewen T N, Babaluk J A, Reist J D, Vincent W F. 2012. Perfluorinated chemicals in meromictic lakes on the northern coast of Ellesmere Island, High Arctic Canada. Arctic, 65: 245–256CrossRefGoogle Scholar
  163. Vermeer M, Rahmstorf S. 2009. Global sea level linked to global temperature. Proc Natl Acad Sci USA, 106: 21527–21532CrossRefGoogle Scholar
  164. Villa S, Vighi M, Maggi V, Finizio A, Bolzacchini E. 2003. Historical trends of organochlorine pesticides in an Alpine glacier. J Atmos Chem, 46: 295–311CrossRefGoogle Scholar
  165. Villa S, Negrelli C, Maggi V, Finizio A, Vighi M. 2006. Analysis of a firn core for assessing POP seasonal accumulation on an Alpine glacier. Ecotox Environ Safe, 63: 17–24CrossRefGoogle Scholar
  166. Wang J, Grisle S, Schlenk D. 2001. Effects of salinity on aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis chrysops). Toxicol Sci, 64: 200–207CrossRefGoogle Scholar
  167. Wang F, Zhu T, Xu B Q, Kang S C. 2007a. Organochlorine pesticides in fresh-fallen snow on East Rongbuk Glacier of Mt. Qomolangma (Everest). Sci China Ser D-Earth Sci, 50: 1097–1102CrossRefGoogle Scholar
  168. Wang H, Yang Z, Saito Y, Liu J P, Sun X, Wang Y. 2007b. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob Planet Change, 57: 331–354CrossRefGoogle Scholar
  169. Wang X, Xu B, Kang S, Cong Z, Yao T. 2008. The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China. Atmos Environ, 42: 6699–6709CrossRefGoogle Scholar
  170. Wang T, Wang Y, Liao C, Cai Y, Jiang G. 2009. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on persistent organic pollutants 1. Environ Sci Technol, 43: 5171–5175CrossRefGoogle Scholar
  171. Wang X, Gong P, Zhang Q, Yao T. 2010a. Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records. Environ Pollut, 158: 375–380CrossRefGoogle Scholar
  172. Wang Y W, Cai Y Q, Jiang G B. 2010b. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention (in Chinese). Sci Sin Chim, 40: 99–123Google Scholar
  173. Wang X, Halsall C, Codling G, Xie Z, Xu B, Zhao Z, Xue Y, Ebinghaus R, Jones K. 2014. Accumulation of perfluoroalkyl compounds in Tibetan Mountain Snow: Temporal Patterns from 1980 to 2010. Environ Sci Technol, 48: 173–181CrossRefGoogle Scholar
  174. Wania F, Mackay D. 1995. A global distribution model for persistent organic chemicals. Sci Total Environ, 160: 211–232CrossRefGoogle Scholar
  175. Wania F, McLachlan M S. 2001. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environ Sci Technol, 35: 582–590CrossRefGoogle Scholar
  176. Wania F, Daly G L. 2002. Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs. Atmos Environ, 36: 5581–5593CrossRefGoogle Scholar
  177. Wania F. 2003. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environ Sci Technol, 37: 1344–1351CrossRefGoogle Scholar
  178. Wania F, Su Y. 2004. Quantifying the global fractionation of polychlorinated biphenyls. Ambio, 33: 161–168CrossRefGoogle Scholar
  179. Waring C P, Moore A. 2004. The effect of atrazine on Atlantic salmon (Salmo salar) smolts in fresh water and after sea water transfer. Aquat Toxicol, 66: 93–104CrossRefGoogle Scholar
  180. Wohrnschimmel H, MacLeod M, Hungerbuhler K. 2013. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate. Environ Sci Technol, 47: 2323–2330CrossRefGoogle Scholar
  181. Xie Z, Moller A, Ahrens L, Sturm R, Ebinghaus R. 2011. Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean. Environ Sci Technol, 45: 1820–1826CrossRefGoogle Scholar
  182. Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam P K, Kannan K. 2008. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere, 70: 1247–1255CrossRefGoogle Scholar
  183. Yang Y L, Pan J, Li Y, Yin X C, Shi L. 2003. The polychlorinated naphthalenes and polybrominated diphenyl ethers in the sediments of Qingdao coastal area. Chin Sci Bull, 48: 2244–2251Google Scholar
  184. Yang R, Yao T, Xu B, Jiang G, Zheng X. 2008. Distribution of organochlorine pesticides (OCPs) in conifer needles in the southeast Tibetan Plateau. Environ Pollut, 153: 92–100CrossRefGoogle Scholar
  185. Yao Z W, Jiang G B, Cai Y Q, Xu H Z, Ma Y A. 2002. Current status of persistent organic pollutants and heavy metal pollution in the surface waters of the Arctic. Chin Sci Bull, 47: 1196–1200Google Scholar
  186. Zhang K, Zhang B Z, Li S M, Zeng E Y. 2011. Regional dynamics of persistent organic pollutants (POPs) in the Pearl River Delta, China: Implications and perspectives. Environ Pollut, 159: 2301–2309CrossRefGoogle Scholar
  187. Zhang X, Meyer T, Muir D C, Teixeira C, Wang X, Wania F. 2013. Atmospheric deposition of current use pesticides in the Arctic: Snow core records from the Devon Island Ice Cap, Nunavut, Canada. Environ Sci: Process Impacts, 15: 2304–2311Google Scholar
  188. Zheng M H. 2013. Research progress of persistent organic pollutants (in Chinese). Sci Sin Chim, 43: 253–254CrossRefGoogle Scholar
  189. Zhong G, Tang J, Xie Z, Möller A, Zhao Z, Sturm R, Chen Y, Tian C, Pan X, Qin W. 2014. Selected current-use and historic-use pesticides in air and seawater of the Bohai and Yellow Seas, China. J Geophys Res, 119: 1073–1086CrossRefGoogle Scholar
  190. Zingde M. 2005. Inputs into the oceans from land/rivers and pollution. In: Gupta H K, ed. Oceanology. India: Universities Press. 92–117Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations