Science China Earth Sciences

, Volume 60, Issue 9, pp 1572–1588 | Cite as

Evolution of the 2015/16 El Niño and historical perspective since 1979

  • Yan Xue
  • Arun Kumar
Open Access
Research Paper Special Topic: Challenges and uncertainties of ENSO prediction: Enlightenments from El Niño event of 2015-2016


The 2015/16 El Niño developed from weak warm conditions in late 2014 and NINO3.4 reached 3oC in November 2015. We describe the characteristics of the evolution of the 2015/16 El Niño using various data sets including SST, surface winds, outgoing longwave radiation and subsurface temperature from an ensemble operational ocean reanalyses, and place this event in the context of historical ENSO events since 1979. One salient feature about the 2015/16 El Niño was a large number of westerly wind bursts and downwelling oceanic Kelvin waves (DWKVs). Four DWKVs were observed in April-November 2015 that initiated and enhanced the eastern-central Pacific warming. Eastward zonal current anomalies associated with DWKVs advected the warm pool water eastward in spring/summer. An upwelling Kelvin wave (UWKV) emerged in early November 2015 leading to a rapid decline of the event. Another outstanding feature was that NINO4 reached a historical high (1.7oC), which was 1oC (0.8oC) higher than that of the 1982/83 (1997/98) El Niño. Although NINO3 was comparable to that of the 1982/83 and 1997/98 El Niño, NINO1+2 was much weaker. Consistently, enhanced convection was displaced 20 degree westward, and the maximum D20 anomaly was about 1/3−1/2 of that in 1997 and 1982 near the west coast of South America.


ENSO Sea surface temperature Westerly wind bursts Ocean Kelvin waves Thermocline variability Ocean reanalysis 



We would like to thank Dr. Dake Chen for the invitation and suggestion for the paper. We also thank Dr. Caihong Wen and Dr. Emily Becker for their constructive comments and suggestions at the internal review. The scientific results and conclusions, as well as any view or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NWS, NOAA, or the Department of Commerce.


  1. Ando K, Matsumoto T, Nagahama T, Ueki I, Takatsuki Y, Kuroda Y. 2005. Drift characteristics of a moored conductivity-temperature-depth sensor and correction of salinity data. J Atmos Ocean Technol, 22: 282–291CrossRefGoogle Scholar
  2. Amaya D J, Xie S P, Miller A J, McPhaden M J. 2015. Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J Geophys Res Oceans, 120: 6782–6798CrossRefGoogle Scholar
  3. Balmaseda M A, Mogensen K, Weaver A T. 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc, 131: 1132–1161CrossRefGoogle Scholar
  4. Balmaseda M A, Co-authors. 2015. The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr, 7: 81–99Google Scholar
  5. Behringer D W, Ji M, Leetmaa A. 1998. An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon Weather Rev, 126: 1013–1021CrossRefGoogle Scholar
  6. Behringer D W, Xue Y. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In: Eighth Symposium on Integrated Observing and Assimilation System for Atmosphere, Ocean, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center. Seattle. 11–15Google Scholar
  7. Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J. 2009. Observed freshening and warming of the western Pacific Warm Pool. Clim Dyn, 33: 565–589CrossRefGoogle Scholar
  8. Chen D, Lian T, Fu C, Cane M A, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci, 8: 339–345CrossRefGoogle Scholar
  9. Chen S, Wu R, Chen W, Yu B, Cao X. 2016. Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmos Sci Lett, 17: 384–391CrossRefGoogle Scholar
  10. Fedorov A V, Hu S, Lengaigne M, Guilyardi E. 2015. The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn, 44: 1381–1401CrossRefGoogle Scholar
  11. Gasparin F, Roemmich D. 2016. The strong freshwater anomaly during the onset of the 2015/2016 El Niño. Geophys Res Lett, 43: 6452–6460CrossRefGoogle Scholar
  12. Hu S, Fedorov A V. 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA, 113: 2005–2010CrossRefGoogle Scholar
  13. Huang B, Xue Y, Zhang D, Kumar A, McPhaden M J. 2010. The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J Clim, 23: 4901–4925CrossRefGoogle Scholar
  14. Huang B, Thorne P W, Smith T M, Liu W, Lawrimore J, Banzon V F, Zhang H M, Peterson T C, Menne M. 2016. Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4. J Clim, 29: 3119–3142CrossRefGoogle Scholar
  15. Jacox M G, Hazen E L, Zaba K D, Rudnick D L, Edwards C A, Moore A M, Bograd S J. 2016. Impacts of the 2015−2016 El Niño on the California current system: Early assessment and comparison to past events. Geophys Res Lett, 43: 7072–7080CrossRefGoogle Scholar
  16. Ji M, Behringer D W, Leetmaa A. 1998. An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon Weather Rev, 126: 1022–1034CrossRefGoogle Scholar
  17. Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54: 811–829CrossRefGoogle Scholar
  18. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc, 77: 437–471CrossRefGoogle Scholar
  19. Kumar A, Hu Z Z. 2014. Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Clim Dyn, 42: 1243–1258CrossRefGoogle Scholar
  20. Levine A, Jin F F, McPhaden M J. 2016. Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño-La Niña asymmetry. J Clim, 29: 5483–5499CrossRefGoogle Scholar
  21. Lee T, McPhaden M J. 2010. Increasing intensity of El Niño in the centralequatorial Pacific. Geophys Res Lett, 37: L14603Google Scholar
  22. Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. J Geophys Res, 96: 3343–3357CrossRefGoogle Scholar
  23. McPhaden M J. Ji M, Julian P, Meyers G, Mitchum G T. 1998. The tropical ocean-global atmosphere (TOGA) observing system: A decade of progress. J Geophys Res, 103: 169–14,240CrossRefGoogle Scholar
  24. McPhaden M J. 1999. Genesis and evolution of the 1997–98 El Niño. Science, 283: 950–954CrossRefGoogle Scholar
  25. McPhaden M J. 2012. A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett, 39: L09706CrossRefGoogle Scholar
  26. McPhaden M J. 2015. Playing hide and seek with El Niño. Nat Clim Change, 5: 791–795CrossRefGoogle Scholar
  27. Meinen C S, McPhaden M J. 2000. Observations of warm water volume changes in the Equatorial Pacific and their relationship to El Niño and La Niña. J Clim, 13: 3551–3559CrossRefGoogle Scholar
  28. Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden M J. 1996. Mechanism of the zonal displacements of the Pacific Warm Pool: Implications for ENSO. Science, 274: 1486–1489CrossRefGoogle Scholar
  29. Reynolds R W, Rayner N A, Smith T M, Stokes D C, Wang W. 2002. An improved in situ and satellite SST analysis for climate. J Clim, 15: 1609–1625CrossRefGoogle Scholar
  30. Shi L, Alves O, Wedd R, Balmaseda M A, Chang Y, Chepurin G, Ferry N, Fujii Y, Gaillard F, Good S A, Guinehut S, Haines K, Hernandez F, Lee T, Palmer M, Peterson K A, Masuda S, Storto A, Toyoda T, Valdivieso M, Vernieres G, Wang X, Yin Y. 2015. An assessment of upper ocean salinity content from the ocean reanalyses inter-comparison project (ORAIP). Clim Dyn, doi: 10.1007/s00382-015-2868-7Google Scholar
  31. Stockdale T N, Anderson D L T, Balmaseda M A, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer T N, Molteni F, Vitart F. 2011. ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn, 37: 455–471CrossRefGoogle Scholar
  32. Takahashi K, Martinez R, Montecinos A, Dewitte B, Gutiérrez D, Rodriguez-Rubio E. 2014. Regional applications of observations in the eastern Pacific. In: Report of the Tropical Pacific Observing System 2020 Workshop (TPOS 2020). Vol II. Scripps Institution of Oceanography, GCOS-184/GOOS-206/WCRP-6/2014. San Diego: United States Publication. 171–205Google Scholar
  33. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M. 2013. Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theoret Appl Mech Jpn, 61: 31–48Google Scholar
  34. Trenberth K E, Branstator G W, Karoly D, Kumar A, Lau N C, Ropelewski C. 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res, 103: 14291–14324CrossRefGoogle Scholar
  35. Vernieres G, Keppenne C, Rienecker M M, Jacob J, Kovach R. 2012. The GEOS-ODAS, description and evaluation. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2012-104606, Vol. 30Google Scholar
  36. Vialard J, Delecluse P. 1998. An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J Phys Oceanogr, 28: 1089–1106CrossRefGoogle Scholar
  37. Weisberg R H, Wang C. 1997. A Western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24: 779–782CrossRefGoogle Scholar
  38. Wen C, Kumar A, Xue Y, McPhaden M J. 2014. Changes in tropical Pacific thermocline depth and their relationship to ENSO after 1999. J Clim, 27: 7230–7249CrossRefGoogle Scholar
  39. Xie P, Boyer T, Bayler E, Xue Y, Byrne D, Reagan J, Locarnini R, Sun F, Joyce R, Kumar A. 2014. An in situ-satellite blended analysis of global sea surface salinity. J Geophys Res Oceans, 119: 6140–6160CrossRefGoogle Scholar
  40. Xue Y, Leetmaa A, Ji M. 2000. ENSO prediction with Markov Models: The impact of sea level. J Clim, 13: 849–871CrossRefGoogle Scholar
  41. Xue Y, Huang B, Hu Z Z, Kumar A, Wen C, Behringer D, Nadiga S. 2011. An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn, 37: 2511–2539CrossRefGoogle Scholar
  42. Yin Y, Alves O, Oke P R. 2011. An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev, 139: 786–808CrossRefGoogle Scholar
  43. Zebiak S E. 1989. Oceanic heat content variability and El Niño cycles. J Phys Oceanogr, 19: 475–486CrossRefGoogle Scholar
  44. Zhang S, Harrison M J, Rosati A, Wittenberg A. 2007. System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev, 135: 3541–3564CrossRefGoogle Scholar
  45. Zheng F, Zhang R H. 2012. Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dyn Atmos Oceans, 57: 45–57CrossRefGoogle Scholar
  46. Zhu J, Kumar A, Huang B, Balmaseda M A, Hu Z Z, Marx L, Kinter III J L. 2016. The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep, 6: 19677CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Climate Prediction CenterNational Centers for Environmental Prediction, National Weather Service, National Oceanic and Atmospheric AdministrationCollege ParkUSA

Personalised recommendations