Advertisement

Science China Earth Sciences

, Volume 60, Issue 1, pp 44–57 | Cite as

Stable isotope paleohydrology and chemostratigraphy of the Albian Wayan Formation from the wedge-top depozone, North American Western Interior Basin

  • Jeffrey B. Ross
  • Greg A. Ludvigson
  • Andreas Möller
  • Luis A. Gonzalez
  • J. D. Walker
Research Paper Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes

Abstract

Understanding of the role of atmospheric moisture and heat transport in the climate system of the Cretaceous greenhouse world represents a major challenge in Earth system science. Stable isotopic paleohydrologic data from mid-Cretaceous paleosols in North America, from paleoequatorial to paleoArctic latitudes, have been used to constrain the oxygen isotope mass balance of the Albian hydrologic cycle. Over the range from 40°–50°N paleolatitude, sideritic paleosols predominate, indicating paleoenvironments with positive precipitation-evaporation (P-E) balances. Local exceptions occur on leeward side of the Sevier Orogen, where calcic paleosols in the wedge-top depozone record paleoenvironments with negative P-E balances in the orographic rain shadow. Stratigraphic sections in the Wayan Formation of Idaho (WF) were sampled from the wedge-top depozone. The units consist of stacked m-scale mudstone paleosols separated by m-scale sandstone-siltstone beds. Sections were sampled for organic carbon isotope profiles, and B-horizons from 6 well-developed paleosols were sampled for detrital zircons to determine maximum depositional ages. The first of these from the WF has produced a U-Pb concordia age of 101.0±1.1 Ma. This same WF section has produced a stratigraphic trend of upwardly decreasing δ 13C values ranging from–24‰ upwards to–27‰ VPDB, suggesting correlation to the late Albian C15 C-isotope segment. Pedogenic carbonates from the WF principally consist of micritic calcite, with carbon-oxygen isotope values that array along meteoric calcite lines (MCLs) with δ 18O values that range from–9.47‰ up to–8.39‰ VPDB. At approximately 42°N paleolatitude, these MCL values produce calculated paleoprecipitation values of–8.12‰ to–7.04‰ VSMOW, a range that is consistent with the estimates produced from other proxies at the same paleolatitudes across North America. These results indicate that despite the orographic rain shadow effect, the processes of meridional atmospheric moisture transport in this locale were similar to those in more humid mid-latitude paleoenvironments elsewhere in the continent.

Keywords

Cretaceous Paleoclimate Wayan Formation Pedogenic carbonates Geochronology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I would like to thank my field assistant, Stephan Oborny, for his help trenching and collecting samples, Luke Miller for his assistance processing samples. I would also like to thank Ted Dyman for walking me through a section of the Blackleaf Formation, and L. J. Krumenaker and Dave Varricchio of Montana State University for assistance in locating suitable Wayan Formation outcrops. And thanks to: Adrienne Duarte, Tony Layzell, Josh Feldman, Ty Tenpenny, and Maggie Graham for the training they provided to help me process samples. I would like to personally thank my advisor, Greg Ludvigson for the support he provided when work was not proceeding as planned. Many thanks to my committee members, Dr. González, Dr. Möller, and Dr. Walker for the help they provided in data interpretations. We thank Stuart Robinson, Marina Suarez, and an anonymous peer reviewer for constructive suggestions that improved our presentation. This paper is a contribution of IGCP Project 609 “Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes”.

Supplementary material

11430_2016_87_MOESM1_ESM.pdf (704 kb)
U-(Th)-Pb geochronological data for zircons from sample WN1.5, sorted from youngest to oldest 206Pb/238U of Cretaceous age grains

References

  1. Armstrong R L, Ward P L. 1993. Late Triassic to earliest Eocene magmatism in the North American Cordillera: implications for the western interior basin. In: Caldwell W G E, Kauffman E G, eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper, 39: 49–72Google Scholar
  2. Bains S, Norris R D, Corfield R M, Bowen G J, Gingerich P D, Koch P L. 2003. Marine-terrestrial linkages at the Paleocene-Eocene boundary. Special Papers-Geological Society of America, 369: 1–10Google Scholar
  3. Blakey R. 2014. Library of Paleogeography. Retrieved April 4, 2016, from Colorado Plateau Geosystems, Inc.:http://cpgeosystems.com/images/WNA_100_KAlb-sm.jpgGoogle Scholar
  4. Blum M, Pecha M. 2014. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42: 607–610CrossRefGoogle Scholar
  5. Boucot A J, Xu C, Scotese C R. 2013. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. Concepts in Sedimentology and Paleontology 11: SEPM (Society for Sedimentary Geology): 216–217. Tulsa, OK, U.S.AGoogle Scholar
  6. Bralower T, CoBabe E, Clement B, Sliter W V, Osburn C L, Longoria, J. 1999. The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico. J Foram Res, 29: 418–437Google Scholar
  7. DeCelles P G, Giles K A. 1996. Foreland basin systems. Basin Res, 8: 105–123CrossRefGoogle Scholar
  8. Dickinson W R, Gehrels G E. 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett, 288: 115–125CrossRefGoogle Scholar
  9. Elliott W S, Suttner L J, Pratt L M. 2007. Tectonically induced climate and its control on the distribution of depositional systems in a continental foreland basin, Cloverly and Lakota Formations (Lower Cretaceous) of Wyoming, U.S.A.. Sedimentary Geol, 202: 730–753CrossRefGoogle Scholar
  10. Erbacher J, Thurow J, Littke R. 1996. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24: 499–502CrossRefGoogle Scholar
  11. Friedman I, O’neil J R. 1977. Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest. Geological Survey Professional Paper 440-KK. US Government Printing OfficeGoogle Scholar
  12. Gröcke D R, Ludvigson G A, Witzke B L, Robinson S A, Joeckel R M, Ufnar D F, Ravn R L. 2006. Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA. Geology, 34: 193CrossRefGoogle Scholar
  13. Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 211: 47–69CrossRefGoogle Scholar
  14. Košler J, Sláma J, Belousova E, Corfu F, Gehrels G E, Gerdes A, Horstwood M S A, Sircombe K N, Sylvester P J, Tiepolo M, Whitehouse M J, Woodhead J D. 2013. U-Pb Detrital Zircon Analysis―Results of an Inter- laboratory Comparison. Geostand Geoanal Res, 37: 243–259CrossRefGoogle Scholar
  15. Krumenacker L J. 2010. Chronostratigraphy and paleontology of the mid-Cretaceous Wayan Formation of eastern Idaho, with a description of the first oryctodromeus specimens from Idaho. Thesis for Master’s Degree. Retrieved January 29, 2013, from Electronic Theses & Dissertations: http://contentdm.lib.byu.edu/cdm/ref/collection/ETD/id/2317Google Scholar
  16. Krumenacker L J, Simon D J, Scofield G, Varricchio D J. 2016. Theropod dinosaurs from the Albian–Cenomanian Wayan Formation of eastern Idaho. Historical Biol, 1–17Google Scholar
  17. Leckie R M, Bralower T J, Cashman R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17: 13-1–13-29CrossRefGoogle Scholar
  18. Lohmann K C. 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James N P, Choquette P W, eds. Paleokarst. New York: Springer-Verlag. 58–80CrossRefGoogle Scholar
  19. Ludvigson G A, González L A, Fowle D A, Roberts J A, Driese S G, Villarreal M A, Smith J J, Suarez, M B. 2013. Paleoclimatic applications and modern process studies of pedogenic siderite. In: Driese S G, Nordt L C, McCarthy P J, eds. New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication, 104: 79–87Google Scholar
  20. Ludvigson G A, González L A, Kirkland J I, Joeckel R M. 2003. A mid-Cretaceous record of carbon isotope excursions in palustrine carbonates of the Cedar Mountain Formation of Utah: Marine-terrestrial correlations of Aptian-Albian oceanic anoxic events 1a, 1b, and 1d. The 3rd International Limnology Congress, Abstract Volume, 169Google Scholar
  21. Ludvigson G A, Joeckel R M, Gonzalez L A, Gulbranson E L, Rasbury E T, Hunt G J, Kirkland J I, Madsen S. 2010. Correlation of Aptian-Albian carbon isotope excursions in continental strata of the Cretaceous Foreland Basin, eastern Utah, U.S.A.. J Sedimentary Res, 80: 955–974CrossRefGoogle Scholar
  22. Ludvigson G A, Ufnar D F, González L A, Carpenter S J, Witzke B J, Brenner R L, Davis J. 2004. Terrestrial paleoclimatology of the mid-Cretaceous greenhouse I: Cross-calibration of pedogenic siderite & calcite δ18O proxies at the Hadley cell boundary. Geol Soc Amer Abstracts Programs, 36: 305Google Scholar
  23. Mintz J S, Driese S G, Breecker D O, Ludvigson G A. 2011. Influence of changing hydrology on pedogenic calcite precipitation in vertisols, Dance Bayou, Brazoria County, Texas, U.S.A.: Implications for Estimating Paleoatmospheric PCO2. J Sedimentary Res, 81: 394–400CrossRefGoogle Scholar
  24. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom, 26: 2508CrossRefGoogle Scholar
  25. Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst, 11: Q0AA06CrossRefGoogle Scholar
  26. Petrus J A, Kamber B S. 2012. VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards Geoanalytical Res, 36: 247–270CrossRefGoogle Scholar
  27. Schmitt J, Moran M. 1982. Stratigraphy of the Cretaceous Wayan Formation, Caribou Mountains, southeastern Idaho thrust belt. Rocky Mountain Geol, 21: 55–71Google Scholar
  28. Scholle P A, Arthur M A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. AAPG Bull, 64: 67–87Google Scholar
  29. Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 249: 1–35CrossRefGoogle Scholar
  30. Spicer R A, Corfield R M. 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modelling the ‘Greenhouse Earth’. Geol Mag, 129: 169CrossRefGoogle Scholar
  31. Suarez C A, González L A, Ludvigson G A, Cifelli R L, Tremain E. 2012. Water utilization of the Cretaceous Mussentuchit Member local vertebrate fauna, Cedar Mountain Formation, Utah, USA: Using oxygen isotopic composition of phosphate. Palaeogeogr Palaeoclimatol Palaeoecol, 313-314: 78–92CrossRefGoogle Scholar
  32. Suarez C A, Gonzalez L A, Ludvigson G A, Kirkland J I, Cifelli R L, Kohn M J. 2014. Multi-taxa isotopic investigation of Paleohydrology in the lower Cretaceous Cedar Mountain Formation, Eastern Utah, U.S.A.: Deciphering effects of the nevadaplano plateau on regional climate. J Sedimentary Res, 84: 975–987CrossRefGoogle Scholar
  33. Suarez M, González L A, Ludvigson G A, Davis J. 2007. Pedogenic sphaerosiderites from the Caballos Formation (Aptian-Albian) of Columbia: A stable isotope proxy for Cretaceous paleoequatorial precipitation. Geol Soc Amer Abstracts Programs, 39: 75Google Scholar
  34. Suarez M B, González L A, Ludvigson G A. 2011. Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: The mid-Cretaceous water bearer revisited. Palaeogeogr Palaeoclimatol Palaeoecol, 307: 301–312CrossRefGoogle Scholar
  35. Suarez M B, Gonzalez L A, Ludvigson G A, Vega F J, Alvarado-Ortega J. 2009. Isotopic composition of low-latitude paleoprecipitation during the Early Cretaceous. Geol Soc Am Bull, 121: 1584–1595CrossRefGoogle Scholar
  36. Tera F, Wasserburg G J. 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett, 14: 281–304CrossRefGoogle Scholar
  37. Ufnar D F, A. González L, Ludvigson G A, Brenner R L, Witzke B J. 2002. The mid-Cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle. Palaeogeogr Palaeoclimatol Palaeoecol, 188: 51–71CrossRefGoogle Scholar
  38. Ufnar D F, González L A, Ludvigson G A, Brenner R L, Witzke B J. 2004. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology, 32: 1049–1052CrossRefGoogle Scholar
  39. Vermeesch P. 2012. On the visualisation of detrital age distributions. Chem Geol, 312-313: 190–194CrossRefGoogle Scholar
  40. Vermeesch P. 2004. How many grains are needed for a provenance study? Earth Planet Sci Lett, 224: 441–451CrossRefGoogle Scholar
  41. Walker J D, Geissman J W, Bowring S A, Babcock L E. 2013. The geological society of America geologic time scale. Geol Soc Am Bull, 125: 259–272CrossRefGoogle Scholar
  42. Whitmeyer S J, Karlstrom K E. 2007. Tectonic model for the Proterozoic growth of North America. Geosphere, 3: 220–259CrossRefGoogle Scholar
  43. Wolfe J A, Upchurch Jr. G R. 1987. North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol, 61: 33–77CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jeffrey B. Ross
    • 1
  • Greg A. Ludvigson
    • 2
  • Andreas Möller
    • 1
  • Luis A. Gonzalez
    • 1
  • J. D. Walker
    • 1
  1. 1.Department of GeologyUniversity of KansasLawrenceUSA
  2. 2.Kansas Geological SurveyUniversity of KansasLawrenceUSA

Personalised recommendations