Science China Earth Sciences

, Volume 59, Issue 11, pp 2213–2222 | Cite as

Estimating thermohaline variability of the equatorial Pacific Ocean from satellite altimetry

Research Paper
  • 61 Downloads

Abstract

The vertical thermohaline structure in the western equatorial Pacific is examined with a Gravest Empirical Mode (GEM) diagnosis of in-situ mooring measurements. The poor GEM performance in estimating deep thermohaline variability from satellite altimetry confirms a lack of vertical coherence in the equatorial ocean. Mooring observation reveals layered equatorial water with phase difference up to 6 months between thermocline and sub-thermocline variations. The disjointed layers reflect weak geostrophy and resemble pancake structures in non-rotating stratified turbulence. A coherency theorem is then proved, stating that traditional stationary GEM represents in-phase coherent structure and can not describe vertically out-of-phase variability. The fact that stationary GEM holds both spatial and temporal coherence makes it a unique tool to diagnose vertical coherent structure in geophysical flows. The study also develops a non-stationary GEM projection that captures more than 40% of the thermohaline variance in the equatorial deep water.

Keywords

Equatorial Pacific TRITON buoys Satellite altimetry GEM Vertical coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Book J W, Wimbush M, Imawaki S, Ichikawa H, Uchida H, Kinoshita H. 2002. Kuroshio temporal and spatial variations south of Japan determined from inverted echo sounder measurements. J Geophys Res, 107: 3121CrossRefGoogle Scholar
  2. Delcroix T. 1998. Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: A tentative overview. J Geophys Res, 103: 18611–18633CrossRefGoogle Scholar
  3. Gavart M, De Mey P. 1997. Isopycnal EOFs in the Azores current region: A statistical tool for dynamical analysis and data assimilation. J Phys Oceanogr, 27: 2146–2157CrossRefGoogle Scholar
  4. Isern-Fontanet J, Lapeyre G, Klein P, Chapron B, Hecht M W. 2008. Threedimensional reconstruction of oceanic mesoscale currents from surface information. J Geophys Res, 113: C09005CrossRefGoogle Scholar
  5. Kessler W S, McCreary J P. 1993. The annual wind-driven rossby wave in the subthermocline equatorial Pacific. J Phys Oceanogr, 23: 1192–1207CrossRefGoogle Scholar
  6. LaCasce J H, Mahadevan A. 2006. Estimating subsurface horizontal and vertical velocities from sea-surface temperature. J Mar Res, 64: 695–721CrossRefGoogle Scholar
  7. Liu L, Peng S, Wang J, Huang R X. 2014. Retrieving density and velocity fields of the ocean’s interior from surface data. J Geophys Res Oceans, 119: 8512–8529CrossRefGoogle Scholar
  8. Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. J Geophys Res, 96: 3343–3357CrossRefGoogle Scholar
  9. Ma X. 2015. Hydrographic diagnostic analysis in the western tropical Pacific based on a streamfunction projection method (in Chinese). Doctoral Dissertation. Beijing: Univ of Chinese Academy SciencesGoogle Scholar
  10. Ma X, Sun C. 2015. Water mass characteristics in the western North Pacific based on a streamfunction projection. Sci China Earth Sci, 58: 2067–2077CrossRefGoogle Scholar
  11. Ma X, Sun C. 2016. Equatorward shift of annual Rossby waves in the equatorial Pacific Ocean. Chin J Ocean Limnol, 34: 212–218CrossRefGoogle Scholar
  12. Marin F, Kestenare E, Delcroix T, Durand F, Cravatte S, Eldin G, Bourdallé-Badie R. 2010. Annual reversal of the equatorial intermediate current in the Pacific: Observations and model diagnostics. J Phys Oceanogr, 40: 915–933CrossRefGoogle Scholar
  13. McPhaden M, Ando K, Bourles B. 2009. The global tropical moored buoy array. Proceedings of OceanObs’09, WPP-306Google Scholar
  14. Meijers A J S, Bindoff N L, Rintoul S R. 2011. Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J Atmos Ocean Technol, 28: 548–568CrossRefGoogle Scholar
  15. Meinen C S, Luther D S, Baringer M O. 2009. Structure, transport and potential vorticity of the Gulf Stream at 68°W: Revisiting older data sets with new techniques. Deep-Sea Res Part I-Oceanogr Res Pap, 56: 41–60CrossRefGoogle Scholar
  16. Nardelli B B, Santoleri R. 2004. Reconstructing synthetic profiles from surface data. J Atmos Ocean Technol, 21: 693–703CrossRefGoogle Scholar
  17. Park J H, Watts D R, Tracey K L, Mitchell D A. 2005. A multi-index GEM technique and its application to the southwestern Japan/East Sea. J Atmos Ocean Technol, 22: 1282–1293CrossRefGoogle Scholar
  18. Pérez-Brunius P, Rossby T, Watts D R. 2004. Transformation of the warm waters of the North Atlantic from a geostrophic streamfunction perspective. J Phys Oceanogr, 34: 2238–2256CrossRefGoogle Scholar
  19. Riley J J, Lelong M P. 2000. Fluid motions in the presence of strong stable stratification. Annu Rev Fluid Mech, 32: 613–657CrossRefGoogle Scholar
  20. Roemmich D, Wunsch C. 1982. On combining satellite altimetry with hydrographic data. J Mar Res, 40: 605–619Google Scholar
  21. Rodrigues R R, Wimbush M, Watts D R, Rothstein L M, Ollitrault M. 2010. South Atlantic mass transports obtained from subsurface float and hydrographic data. J Mar Res, 68: 819–850CrossRefGoogle Scholar
  22. Sun C. 2001. The columnar structure in stratified geostrophic flows. Geophys Astro Fluid, 95: 55–65CrossRefGoogle Scholar
  23. Sun C, Watts D R. 2001. A circumpolar gravest empirical mode for the Southern Ocean hydrography. J Geophys Res, 106: 2833–2855CrossRefGoogle Scholar
  24. Sun C. 2007. Temperature phase tilt in unstable baroclinic waves. J Atmos Sci, 64: 4520–4522CrossRefGoogle Scholar
  25. Sun C. 2008. A baroclinic laminar state for rotating stratified flows. J Atmos Sci, 65: 2740–2747CrossRefGoogle Scholar
  26. Sun C. 2016. High-order exact solutions for pseudo-plane ideal flows. Phys Fluids, 28: 083602CrossRefGoogle Scholar
  27. Swart S, Speich S, Ansorge I J, Lutjeharms J R E. 2010. An altimetry-based gravest empirical mode south of Africa: 1. development and validation. J Geophys Res, 115: C03002Google Scholar
  28. Wang J, Flierl G R, LaCasce J H, McClean J L, Mahadevan A. 2013. Reconstructing the ocean’s interior from surface data. J Phys Oceanogr, 43: 1611–1626CrossRefGoogle Scholar
  29. Watts D R, Sun C, Rintoul S. 2001. A two-dimensional gravest empirical mode determined from hydrographic observations in the Subantarctic Front. J Phys Oceanogr, 31: 2186–2209CrossRefGoogle Scholar
  30. Zhang L, Sun C. 2012. A geostrophic empirical mode based on altimetric sea surface height. Sci China Earth Sci, 55: 1193–1205CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina

Personalised recommendations