Advertisement

Science China Earth Sciences

, Volume 60, Issue 4, pp 686–696 | Cite as

AntarcticaLC2000: The new Antarctic land cover database for the year 2000

  • FengMing Hui
  • Jing Kang
  • Yan Liu
  • Xiao ChengEmail author
  • Peng Gong
  • Fang Wang
  • Zhan Li
  • YuFang Ye
  • ZiQi Guo
Research Paper
  • 130 Downloads

Abstract

Antarctica plays a key role in global energy balance and sea level change. It has been conventionally viewed as a whole ice body with high albedo in General Circulation Models or Regional Climate Models and the differences of land cover has usually been overlooked. Land cover in Antarctica is one of the most important drivers of changes in the Earth system. Detailed land cover information over the Antarctic region is necessary as spatial resolution improves in land process models. However, there is a lack of complete Antarctic land cover dataset derived from a consistent data source. To fill this data gap, we have produced a database named Antarctic Land Cover Database for the Year 2000 (AntarcticaLC2000) using Landsat Enhanced Thematic Mapper Plus (ETM+) data acquired around 2000 and Moderate Resolution Imaging Spectrometer (MODIS) images acquired in the austral summer of 2003/2004 according to the criteria for the 1:100000-scale. Three land cover types were included in this map, separately, ice-free rocks, blue ice, and snow/firn. This classification legend was determined based on a review of the land cover systems in Antarctica (LCCSA) and an analysis of different land surface types and the potential of satellite data. Image classification was conducted through a combined usage of computer-aided and manual interpretation methods. A total of 4067 validation sample units were collected through visual interpretation in a stratified random sampling manner. An overall accuracy of 92.3% and the Kappa coefficient of 0.836 were achieved. Results show that the areas and percentages of ice-free rocks, blue ice, and snow/firn are 73268.81 km2 (0.537%), 225937.26 km2 (1.656%), and 13345460.41 km2 (97.807%), respectively. The comparisons with other different data proved a higher accuracy of our product and a more advantageous data quality. These indicate that AntarcticaLC2000, the new land cover dataset for Antarctica entirely derived from satellite data, is a reliable product for a broad spectrum of applications.

Keywords

Antarctica Land cover Remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the LIMA mission at the U.S. Geological Survey for providing the ETM+ scenes, the National Snow and Ice Data Center for providing the MODIS mosaic data and the Scientific Committee on Antarctic Research for providing the Composite Gazetteer of Antarctica and the Antarctic Digital Database. This work was supported by the Chinese Arctic and Antarctic Administration, National Basic Research Program of China (Grant No. 2012CB957704), National Natural Science Foundation of China (Grant Nos. 41676176 & 41676182), and National High-tech R&D Program of China (Grant No. 2008AA09Z117).

References

  1. Anderson J R, Hardy E E, Roach J T, Witmer R E. 1976. A Land Use and Land Cover Classification System for Use with Remote Sensor Data. Washington: US Government Printing OfficeGoogle Scholar
  2. Barnett T P, Dümenil L, Schlese U, Roeckner E, Latif M. 1989. The effect of eurasian snow cover on regional and global climate variations. J Atmos Sci, 46: 661–686CrossRefGoogle Scholar
  3. Bindschadler R, Vornberger P, Fleming A, Fox A, Mullins J, Binnie D, Paulsen S, Granneman B, Gorodetzky D. 2008. The landsat image mosaic of Antarctica. Remote Sens Environ, 112: 4214–4226CrossRefGoogle Scholar
  4. Bintanja R. 1999. On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys, 37: 337–359CrossRefGoogle Scholar
  5. Bintanja R, Reijmer C H. 2001. Meteorological conditions over Antarctic blue-ice areas and their influence on the local surface mass balance. J Glaciol, 47: 37–50CrossRefGoogle Scholar
  6. Bintanja R, van den Broeke M R. 1995. The climate sensitivity of Antarctic blue-ice areas. Ann Glaciol, 21: 157–161CrossRefGoogle Scholar
  7. Bintanja R, van den Broeke M R. 1995. The surface energy balance of Antarctic snow and blue ice. J Appl Meteorol, 34: 902–926CrossRefGoogle Scholar
  8. Bohlander J, Scambos T. 2007. Antarctic Coastlines and Grounding Line Derived from MODIS Mosaic of Antarctica (MOA). Boulder: National Snow and Ice Data CenterGoogle Scholar
  9. Clinton N, Holt A, Scarborough J, Yan L, Gong P. 2010. Accuracy assessment measures for object-based image segmentation goodness. Photogramm Eng Remote Sens, 76: 289–299CrossRefGoogle Scholar
  10. Cochran W G. 1977. Sampling Techniques. 3rd ed. New York: John Wiley & SonsGoogle Scholar
  11. Congalton R G, Green K. 2009. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2nd ed. Boca Raton: CRC PressGoogle Scholar
  12. Curzio P, Folco L, Ada Laurenzi M, Mellini M, Zeoli A. 2008. A tephra chronostratigraphic framework for the Frontier Mountain blue-ice field (northern Victoria Land, Antarctica). Quat Sci Rev, 27: 602–620CrossRefGoogle Scholar
  13. Delisle G, Sievers J. 1991. Sub-ice topography and meteorite finds near the Allan Hills and the near Western Ice Field, Victoria Land, Antarctica. J Geophys Res, 96: 15577–15587CrossRefGoogle Scholar
  14. Dozier J. 1989. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens Environ, 28: 9–22CrossRefGoogle Scholar
  15. Foody G M. 2002. Status of land cover classification accuracy assessment. Remote Sens Environ, 80: 185–201CrossRefGoogle Scholar
  16. Gamanya R, De Maeyer P, De Dapper M. 2007. An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Syst Appl, 32: 616–624CrossRefGoogle Scholar
  17. Gong P, Howarth P J. 1990. An assessment of some factors influencing multispectral land-cover classification. Photogramm Eng Remote Sens, 56: 597–603Google Scholar
  18. Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Niu Z, Huang X, Fu H, Liu S, Li C, Li X, Fu W, Liu C, Xu Y, Wang X, Cheng Q, Hu L, Yao W, Zhang H, Zhu P, Zhao Z, Zhang H, Zheng Y, Ji L, Zhang Y, Chen H, Yan A, Guo J, Yu L, Wang L, Liu X, Shi T, Zhu M, Chen Y, Yang G, Tang P, Xu B, Giri C, Clinton N, Zhu Z, Chen J, Chen J. 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens, 34: 2607–2654CrossRefGoogle Scholar
  19. Grenfell T C, Warren S G, Mullen P C. 1994. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J Geophys Res, 99: 18669–18684CrossRefGoogle Scholar
  20. Hall A. 2004. The role of surface albedo feedback in climate. J Clim, 17: 1550–1568CrossRefGoogle Scholar
  21. Haran T, Bohlander J, Scambos T, Fahnestock M. 2005. MODIS Mosaic of Antarctica image map and surface snow grain size image. National Snow and Ice Data Center, catalogue number 280, Digital MediaGoogle Scholar
  22. Hu L Y, Chen Y L, Xu Y, Zhao Y Y, Yu L, Wang J, Gong P. 2014. A 30 meter land cover mapping of China with an efficient clustering algorithm CBEST. Sci China Earth Sci, 57: 2293–2304CrossRefGoogle Scholar
  23. Hui F M, Cheng X, Liu Y, Zhang Y M, Ye Y F, Wang X W, Li Z, Wang K, Zhan Z F, Guo J H, Huang H B, Li X H, Guo Z Q, Gong P. 2013. An improved landsat image mosaic of Antarctica. Sci China Earth Sci, 56: 1–12CrossRefGoogle Scholar
  24. Hui F, Ci T, Cheng X, Scambos T A, Liu Y, Zhang Y, Chi Z, Huang H, Wang X, Wang F, Zhao C, Jin Z, Wang K. 2014. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann Glaciology, 55: 129–137CrossRefGoogle Scholar
  25. Jezek K C. 2002. RADARSAT-1 Antarctic Mapping Project: Change-detection and surface velocity campaign. Ann Glaciol, 34: 263–268CrossRefGoogle Scholar
  26. Koeberl C. 1989. Iridium enrichment in volcanic dust from blue ice fields, Antarctica, and possible relevance to the K/T boundary event. Earth Planet Sci Lett, 92: 317–322CrossRefGoogle Scholar
  27. Laben C A, Brower B V. 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent 6011875Google Scholar
  28. Li G, Sun J. 1994. A preliminary study on the automatic taxonaomy of rock in the Mirror Peninsula of the Larsemann Hills, East Antarctica, by TM data (in Chinese). Antarct Res, 6: 82–87Google Scholar
  29. Liao A P, Chen L J, Chen J, He C Y, Cao X, Chen J, Peng S, Sun F D, Gong P. 2014. High-resolution remote sensing mapping of global land water. Sci China Earth Sci, 57: 2305–2316CrossRefGoogle Scholar
  30. Lillesand T M, Kiefer R W. 1994. Remote Sensing and Image Interpretation. New York: John Wiley & Sons. 468Google Scholar
  31. Liu H, Jezek K C. 2004. A complete high-resolution coastline of Antarctica extracted from orthorectified radarsat SAR imagery. Photogramm Eng Remote Sens, 70: 605–616CrossRefGoogle Scholar
  32. Liu Y, Moore J C, Cheng X, Gladstone R M, Bassis J N, Liu H, Wen J, Hui F. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc Natl Acad Sci USA, 112: 3263–3268CrossRefGoogle Scholar
  33. Loveland T R, Reed B C, Brown J F, Ohlen D O, Zhu Z, Yang L, Merchant J W. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens, 21: 1303–1330CrossRefGoogle Scholar
  34. Lu D, Weng Q. 2007. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens, 28: 823–870CrossRefGoogle Scholar
  35. Marshall S, Oglesby R J, Nolin A W. 2001. Effect of western U.S. snow cover on climate. Ann Glaciol, 32: 82–86CrossRefGoogle Scholar
  36. Massom R, Lubin D. 2006. Polar Remote Sensing Volume II: Ice Sheets. Berlin: SpringerGoogle Scholar
  37. Meier M F, Dyurgerov M B, Rick U K, O’neel S, Pfeffer W T, Anderson R S, Anderson S P, Glazovsky A F. 2007. Glaciers dominate eustatic sea-level rise in the 21st Century. Science, 317: 1064–1067CrossRefGoogle Scholar
  38. Merson R H. 1989. An AVHRR mosaic image of Antarctica. Int J Remote Sens, 10: 669–674CrossRefGoogle Scholar
  39. Mitrovica J X, Tamisiea M E, Davis J L, Milne G A. 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409: 1026–1029CrossRefGoogle Scholar
  40. Morgan F, Barker G, Briggs C, Price R, Keys H. 2007. Environmental Domains of Antarctica Version 2.0 Final ReportGoogle Scholar
  41. Morisette J T, Privette J L, Justice C O. 2002. A framework for the validation of MODIS Land products. Remote Sens Environ, 83: 77–96CrossRefGoogle Scholar
  42. Olofsson P, Foody G M, Herold M, Stehman S V, Woodcock C E, Wulder M A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ, 148: 42–57CrossRefGoogle Scholar
  43. Price J C. 2003. Comparing MODIS and ETM+ data for regional and global land classification. Remote Sens Environ, 86: 491–499CrossRefGoogle Scholar
  44. Ran Y H, Li X. 2015. First comprehensive fine-resolution global land cover map in the world from China—Comments on global land cover map at 30-m resolution. Sci China Earth Sci, 58: 1677–1678CrossRefGoogle Scholar
  45. Rasmus K. 2006. Field measurements of the total and spectral albedo of snow and ice in Dronning Maud Land, Antarctica. Geophysica, 42: 17–34Google Scholar
  46. Reijmer C H, Bintanja R, Greuell W. 2001. Surface albedo measurements over snow and blue ice in thematic mapper bands 2 and 4 in Dronning Maud Land, Antarctica. J Geophys Res, 106: 9661–9672CrossRefGoogle Scholar
  47. Reijmer C H, Oerlemans J. 2002. Temporal and spatial variability of the surface energy balance in Dronning Maud Land, East Antarctica. J Geophys Res, 107: 4759CrossRefGoogle Scholar
  48. Scambos T A, Haran T M, Fahnestock M A, Painter T H, Bohlander J. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens Environ, 111: 242–257CrossRefGoogle Scholar
  49. Shackelford A K, Davis C H. 2003. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans Geosci Remote Sens, 41: 2354–2364CrossRefGoogle Scholar
  50. Vaughan D G, Bamber J L, Giovinetto M, Russell J, Cooper A P R. 1999. Reassessment of net surface mass balance in Antarctica. J Clim, 12: 933–946CrossRefGoogle Scholar
  51. Walter V. 2004. Object-based classification of remote sensing data for change detection. ISPRS J Photogramm Remote Sens, 58: 225–238CrossRefGoogle Scholar
  52. Williams R S, Meunier T K, Ferrigno J G. 1983. Blue ice, meteorites and satellite imagery in Antarctica. Polar Record, 21: 493–496CrossRefGoogle Scholar
  53. Winther J G, Jespersen M N, Liston G E. 2001. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J Glaciol, 47: 325–334CrossRefGoogle Scholar
  54. Wuttke S, Seckmeyer G, König-Langlo G. 2006. Measurements of spectral snow albedo at Neumayer, Antarctica. Ann Geophys, 24: 7–21CrossRefGoogle Scholar
  55. Yang J C, Li Y L. 2001. Geomorphology Theory (in Chinese). Beijing: Peking University PressGoogle Scholar
  56. Yu J, Liu H, Wang L, Jezek K C, Heo J. 2012. Blue ice areas and their topographical properties in the Lambert glacier, Amery Iceshelf system using Landsat ETM+, ICESat laser altimetry and ASTER GDEM data. Antarct Sci, 24: 95–110CrossRefGoogle Scholar
  57. Yu L, Wang J, Li X C, Li C C, Zhao Y Y, Gong P. 2014. A multi-resolution global land cover dataset through multisource data aggregation. Sci China Earth Sci, 57: 2317–2329CrossRefGoogle Scholar
  58. Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D. 2006. Object- based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm Eng Remote Sensing, 72: 799–811CrossRefGoogle Scholar
  59. Zhao Y, Liu X, Song B, Zhang Z, Li J, Yao Y, Wang Y. 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: Possible implications for Neoproterozoic tectonics. Precambrian Res, 75: 175–188CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • FengMing Hui
    • 1
    • 6
  • Jing Kang
    • 1
  • Yan Liu
    • 1
    • 6
  • Xiao Cheng
    • 1
    • 6
    Email author
  • Peng Gong
    • 2
    • 3
    • 6
  • Fang Wang
    • 1
  • Zhan Li
    • 1
    • 4
  • YuFang Ye
    • 1
    • 5
  • ZiQi Guo
    • 3
  1. 1.State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.Ministry of Education Key Laboratory for Earth System Modeling, Centre for Earth System ScienceTsinghua UniversityBeijingChina
  3. 3.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  4. 4.School for the EnvironmentUniversity of Massachusetts BostonBostonUSA
  5. 5.Institute of Environmental PhysicsUniversity of BremenBremenGermany
  6. 6.Joint Center for Global Change StudiesBeijingChina

Personalised recommendations