Science China Earth Sciences

, Volume 60, Issue 10, pp 1854–1865 | Cite as

Seasonally evolving dominant interannual variability mode of air-sea CO2 flux over the western North Pacific simulated by CESM1-BGC

Research Paper


We applied a season-reliant empirical orthogonal function (S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO2 flux over the western North Pacific (WNP) (0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Niño-Southern Oscillation (ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone (WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO2 uptake by enhancing surface seawater CO2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO2 flux anomalies in the spring.


Air-sea CO2 flux Western North Pacific Interannual variability ENSO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the NCAR model group for the output data of CESM1-BGC and Dr. Li Yangchun from Institute of Atmospheric Physics, Chinese Academy of Sciences for the helpful comments and advice. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41330423, 41420104006) and Jiangsu Collaborative Innovation Center for Climate Change.


  1. Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, Jones C, Jung M, Myneni R, Zhu Z. 2013. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models. J Clim, 26: 6801–6843CrossRefGoogle Scholar
  2. Arora V K, Boer G J, Friedlingstein P, Eby M, Jones C D, Christian J R, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra J F, Wu T. 2013. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth System Models. J Clim, 26: 5289–5314CrossRefGoogle Scholar
  3. Boer G J, Arora V. 2009. Temperature and concentration feedbacks in the carbon cycle. Geophys Res Lett, 36: L02704CrossRefGoogle Scholar
  4. Chen C T A, Wang S L, Chou W C, Sheu D D. 2006. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Mar Chem, 101: 277–305CrossRefGoogle Scholar
  5. Chou W C, Gong G C, Sheu D D, Hung C C, Tseng T F. 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. J Geophys Res, 114: C07026Google Scholar
  6. Chou W C, Gong G C, Tseng C M, Sheu D D, Hung C C, Chang L P, Wang L W. 2011. The carbonate system in the East China Sea in winter. Mar Chem, 123: 44–55CrossRefGoogle Scholar
  7. Doney S C, Lindsay K, Fung I, John J. 2006. Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation. J Clim, 19: 3033–3054CrossRefGoogle Scholar
  8. Doney S C, Lima I, Feely R A, Glover D M, Lindsay K, Mahowald N, Moore J K, Wanninkhof R. 2009. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 640–655CrossRefGoogle Scholar
  9. Feely R A, Boutin J, Cosca C E, Dandonneau Y, Etcheto J, Inoue H Y, Ishii M, Quéré C L, Mackey D J, McPhaden M, Metzl N, Poisson A, Wanninkhof R. 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 2443–2469CrossRefGoogle Scholar
  10. Feely R A, Takahashi T, Wanninkhof R, McPhaden M J, Cosca C E, Sutherland S C, Carr M E. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J Geophys Res, 111: C08S90CrossRefGoogle Scholar
  11. Fujii M, Chai F. 2007. Modeling carbon and silicon cycling in the equatorial Pacific. Deep-Sea Res Part II-Top Stud Oceanogr, 54: 496–520CrossRefGoogle Scholar
  12. Fujii M, Chai F, Shi L, Inoue H Y, Ishii M. 2009. Seasonal and interannual variability of oceanic carbon cycling in the western and central tropical- subtropical pacific: A physical-biogeochemical modeling study. J Oceanogr, 65: 689–701CrossRefGoogle Scholar
  13. Gill A E. 1980. Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc, 106: 447–462CrossRefGoogle Scholar
  14. Gregory J M, Jones C D, Cadule P, Friedlingstein P. 2009. Quantifying carbon cycle feedbacks. J Clim, 22: 5232–5250CrossRefGoogle Scholar
  15. Inoue H Y, Ishii M, Matsueda H, Ahoyama M, Asanuma I. 1996. Changes in longitudinal distribution of the partial pressure of CO2 (pCO2) in the central and western equatorial Pacific, west of 160°W. Geophys Res Lett, 23: 1781–1784CrossRefGoogle Scholar
  16. Ishii M, Feely R A, Rodgers K B, Park G H, Wanninkhof R, Sasano D, Sugimoto H, Cosca C E, Nakaoka S, Telszewski M, Nojiri Y, Mikaloff Fletcher S E, Niwa Y, Patra P K, Valsala V, Nakano H, Lima I, Doney S C, Buitenhuis E T, Aumont O, Dunne J P, Lenton A, Takahashi T. 2013. Air-sea CO2 flux in the Pacific Ocean for the period 1990–2009. Biogeo Sci Discuss, 10: 12155–12216CrossRefGoogle Scholar
  17. Jiang M, Chai F. 2006. Physical control on the seasonal cycle of surface pCO2 in the equatorial Pacific. Geophys Res Lett, 33: L23608CrossRefGoogle Scholar
  18. Keppel-Aleks G, Randerson J T, Lindsay K, Stephens B B, Keith Moore J, Doney S C, Thornton P E, Mahowald N M, Hoffman F M, Sweeney C, Tans P P, Wennberg P O, Wofsy S C. 2013. Atmospheric Carbon Dioxide variability in the community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty-first Centuries. J Clim, 26: 4447–4475CrossRefGoogle Scholar
  19. Le Quéré C, Orr J C, Monfray P, Aumont O, Madec G. 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Glob Biogeochem Cycle, 14: 1247–1265CrossRefGoogle Scholar
  20. Li Y C, Xu Y F. 2013. Response of the air-sea CO2 flux to climate events in the Pacific Ocean (in Chinese). Clim Environ Res, 18: 571–582Google Scholar
  21. Long M C, Lindsay K, Peacock S, Moore J K, Doney S C. 2013. Twentieth- Century oceanic carbon uptake and storage in CESM1(BGC). J Clim, 26: 6775–6800CrossRefGoogle Scholar
  22. Lovenduski N S, Gruber N, Doney S C, Lima I D. 2007. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob Biogeochem Cycle, 21: GB2026CrossRefGoogle Scholar
  23. McKinley G A, Follows M J, Marshall J. 2004. Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlantic. Glob Biogeochem Cycle, 18: GB2011CrossRefGoogle Scholar
  24. McKinley G A, Takahashi T, Buitenhuis E, Chai F, Christian J R, Doney S C, Jiang M S, Lindsay K, Moore J K, Le Quéré C, Lima I, Murtugudde R, Shi L, Wetzel P. 2006. North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. J Geophys Res, 111: C07S06CrossRefGoogle Scholar
  25. Moore J K, Doney S C, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob Biogeochem Cycle, 18: GB4028CrossRefGoogle Scholar
  26. Midorikawa T, Ishii M, Nemoto K, Kamiya H, Nakadate A, Masuda S, Matsueda H, Nakano T, Inoue H Y. 2006. Interannual variability of winter oceanic CO2 and air-sea CO2 flux in the western North Pacific for 2 decades. J Geophys Res, 111: C07S02CrossRefGoogle Scholar
  27. Midorikawa T, Nemoto K, Kamiya H, Ishii M, Inoue H Y. 2005. Persistently strong oceanic CO2 sink in the western subtropical North Pacific. Geophys Res Lett, 32: L05612CrossRefGoogle Scholar
  28. North G R, Bell T L, Cahalan R F, Moeng F J. 1982. Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev, 110: 699–706CrossRefGoogle Scholar
  29. Obata A, Kitamura Y. 2003. Interannual variability of the sea-air exchange of CO2 from 1961 to 1998 simulated with a global ocean circulationbiogeochemistry model. J Geophys Res, 108: 3337CrossRefGoogle Scholar
  30. Park G H, Lee K, Wanninkhof R, Feely R A. 2006. Empirical temperaturebased estimates of variability in the oceanic uptake of CO2 over the past 2 decades. J Geophys Res, 111: C07S07CrossRefGoogle Scholar
  31. Qiao R, Wang Z G, Chen Z, Li S M, Yu Y H, Lv H G. 2005. Distribution of marine carbon dioxide and its relationship with other marine parameters and air-sea anomalies (in Chinese). Acta Oceanol Sin, 27: 30–37Google Scholar
  32. Qu B X, Song J M, Yuan H M, Li X G, Li N, Duan L Q, Ma Q X, Chen X. 2013. Advances of seasonal variations and controlling factors of the sea-air CO2 flux in the East China Sea (in Chinese). Adv Earth Sci, 28: 783–793Google Scholar
  33. Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305: 367–371CrossRefGoogle Scholar
  34. Smith R D, Gent P. 2010. The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech Rep LAUR-10-01853, 140Google Scholar
  35. Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc, 93: 485–498CrossRefGoogle Scholar
  36. Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R, De Baar H J W. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 554–577CrossRefGoogle Scholar
  37. Tanimoto Y, Iwasaka N, Hanawa K. 1997. Relationships between sea surface temperature, the atmospheric circulation and air-sea fluxes on multiple time scales. J Meteorol Soc Jpn, 75: 831–849CrossRefGoogle Scholar
  38. Thomas H, Bozec Y, Elkalay K, De Baar H J W. 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304: 1005–1008CrossRefGoogle Scholar
  39. Tseng C M, Wong G T F, Chou W C, Lee B S, Sheu D D, Liu K K. 2007. Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep-Sea Res Part II-Top Stud Oceanogr, 54: 1448–1468CrossRefGoogle Scholar
  40. Tsunogai S, Watanabe S, Sato T. 1999. Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus B, 51: 701–712CrossRefGoogle Scholar
  41. Wang B, Wu R, Fu X. 2000. Pacific-East Asian teleconnection: How does ENSO affect east Asian climate? J Clim, 13: 1517–1536CrossRefGoogle Scholar
  42. Wang B, Wu R G, Lukas R, An S I. 2001. A possible mechanism for ENSO turnabout. Dymamics of atmospheric general circulation and climate, IAP/Academia Sinica. Beijing: China Meteorological Press. 552–578Google Scholar
  43. Wang B, Wu R G, Li T. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J Clim, 16: 1195–1211CrossRefGoogle Scholar
  44. Wang B, An S I. 2005. A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys Res Lett, 32: L15710CrossRefGoogle Scholar
  45. Wang W Q, Huang X B, Zhang Y H. 1998. The differences of the partial pressure of carbon dioxide between sea and air and its flux in the western Pacific (in Chinese). Chin J Polar Res, 10: 77–82Google Scholar
  46. Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res, 97: 7373–7382CrossRefGoogle Scholar
  47. Weiss R F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar Chem, 2: 203–215CrossRefGoogle Scholar
  48. Williams R G, Follows M J. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. New York: Cambridge University Press. 125–155CrossRefGoogle Scholar
  49. Wu B, Zhou T J, Li T. 2009. Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim, 22: 2992–3005CrossRefGoogle Scholar
  50. Xu Y F, Zhao L, Pu Y F, Li Y C. 2004. Uncertainties in the estimate of the air-sea exchange flux of carbon dioxide (in Chinese). Earth Sci Front, 11: 565–571Google Scholar
  51. Yan H Q, Yu K F, Shi Q, Tan Y H, Zhang H L, Zhao M X, Li S, Chen T R, Huang L Y, Wang P X. 2011. Coral reef ecosystems in the South China Sea as a source of atmospheric CO2 in summer. Chin Sci Bull, 56: 676–684CrossRefGoogle Scholar
  52. Zhai W D, Dai M H, Cai W J, Wang Y, Wang Z. 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary, China. Mar Chem, 93: 21–32CrossRefGoogle Scholar
  53. Zhai W D, Dai M H. 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Mar Chem, 117: 2–10CrossRefGoogle Scholar
  54. Zhai W D, Dai M H, Chen B S, Guo X H, Li Q, Shang S L, Zhang C Y, Cai W J, Wang D X. 2013. Seasonal variations of sea-air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences, 10: 7775–7791CrossRefGoogle Scholar
  55. Zhang R H, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian Monsoon. J Meteorol Soc Jpn, 74: 49–62CrossRefGoogle Scholar
  56. Zhang R H, Sumi A. 2002. Moisture circulation over east Asia during El Niño episode in Northern Winter, Spring and Autumn. J Meteorol Soc Jpn, 80: 213–227CrossRefGoogle Scholar
  57. Zhang L J. 2003. The study on the CO2 flux at the sea-atmosphere interface over the East China Sea (in Chinese). Dissertation for Doctoral Degree. Qingdao: Ocean University of ChinaGoogle Scholar
  58. Zhou T J, Wu B, Wang B. 2009. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J Clim, 22: 1159–1173CrossRefGoogle Scholar
  59. Zhou T J, Zou L W, Wu B, Jin C, Song F, Chen X, Zhang L. 2014. Development of earth/climate system models in China: A review from the coupled model intercomparison project perspective. J Meteorol Res, 28: 762–779CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • ChenXi Jin
    • 1
    • 2
    • 3
  • TianJun Zhou
    • 1
  • XiaoLong Chen
    • 1
  • Bo Wu
    • 1
  1. 1.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Beijing Meteorological Service CenterBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations