Science China Earth Sciences

, Volume 59, Issue 4, pp 760–769 | Cite as

Sand dunes as potential sources of dust in northern China

  • Mark R. Sweeney
  • HuaYu Lu
  • MengChun Cui
  • Joseph A. Mason
  • Han Feng
  • ZhiWei Xu
Research Paper


While saltation bombardment of sand grains on a fine substrate can produce considerable dust, the well-sorted nature of sand dunes tends to preclude them from consideration as major dust sources. Recent research, however, has revealed that sand dunes can, in some cases, be large sources of dust. We used the PI-SWERL (Portable In-Situ Wind Erosion Laboratory) to measure in the field the potential of sand dunes and other desert landforms to emit particulate matter <10 μm (PM-10) dust in the Tengger, Ulan Buh, and Mu Us deserts of northern China. Combined with high resolution particle size measurements of the dune sand, an assessment of sand dunes as a dust source can be made. Large active transverse dunes tend to contain little to no stored PM-10, yet they produce a low dust flux. Coppice dunes stabilized by vegetation contain appreciable PM-10 and have very high dust emission potential. There is a positive correlation between the amount of PM-10 stored in a dune and its potential dust flux. Saltation liberates loose fines stored in dunes, making them very efficient dust emitters compared to landforms such as dry lake beds and washes where dust particles are unavailable for aeolian transport due to protective crusts or sediment cohesion. In cases where large dunes do not store PM-10 yet emit dust when active, two hypotheses can be considered: (1) iron-oxide grain coatings are removed during saltation, creating dust, and (2) sand grains collide during saltation, abrading grains to create dust. Observations reveal that iron oxide coatings are present on some dune sands. PI-SWERL data suggests that low dust fluxes from dunes containing no stored dust may represent an estimate for the amount of PM-10 dust produced by removal of iron oxide coatings. These results are similar to results from dunes in the United States. In addition, PI-SWERL results suggest that dust-bearing coppice dunes, which cover vast areas of China’s sandy deserts, may become major sources of dust in the future if overgrazing, depletion of groundwater, or drought destabilizes the vegetation that now partially covers these dunes.


Coppice dunes Transverse dunes Dust PI-SWERL Desert 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amit R, Enzel Y, Mushkin A, Gillespie A, Jigjidsurengiin B, Crouvi O, Vandenberghe J, An Z. 2014. Linking coarse silt production in Asian sand deserts and quaternary accretion of the Chinese Loess Plateau. Geology, 42: 23–26CrossRefGoogle Scholar
  2. Bacon S N, Mc Donald E V, Amit R, Enzel Y, Crouvi O. 2011. Total suspended particulate matter emissions at high friction velocities from desert landforms. J Geophys Res, 116: F03019, doi: 10.1029/2011JF001965Google Scholar
  3. Bagnold R A. 1941. The Physics of Blown Sand and Desert Dunes. London: Chapman and HallGoogle Scholar
  4. Bird A, Stevens T, Rittner M, Vermeesch P, Carter A, Ando S, Garzanti E, Lu H, Nie J, Zeng, L, Zhang H, Xu, Z. 2015. Quaternary dust source variation across the Chinese Loess Plateau. Paleogeogr Paleoclimatol Paleoecol, 435: 254–264CrossRefGoogle Scholar
  5. Bullard J E, Mc Tainsh G H, Pudmezky C. 2004. Aeolian abrasion and modes of fine particle production from natural red dune sands: An experimental study. Sedimentology, 51: 1103–1125CrossRefGoogle Scholar
  6. Bullard J E, White K. 2005. Dust production and the release of iron oxides resulting from the aeolian abrasion of natural dune sands. Earth Surf Process Landf, 30: 95–106CrossRefGoogle Scholar
  7. Bullard J E, Harrison S P, Baddock M C, Drake N, Gill T, McTainsh G, Sun Y. 2011. Preferential dust sources: A geomorphological classification designed for use in global dust cycle models. J Geophys Res, 116: F04034, doi: 10.1029/2011JF002061Google Scholar
  8. Chen J, Li G J. 2011. Geochemical studies on the source region of Asian dust. Sci China Earth Sci, 54: 1279–1301CrossRefGoogle Scholar
  9. Creamean J M, Suski K J, Rosenfeld D, Cazorla A, DeMott, P J, Sullivan R C, White A B, Ralph F M, Minnis P, Comstock J M, Tomlinson J M, Prather K A. 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339: 1572–1578CrossRefGoogle Scholar
  10. Crouvi O, Amit R, Enzel Y, Porat N, Sandler A. 2008. Sand dunes as major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quat Res, 70: 275–282CrossRefGoogle Scholar
  11. Crouvi O, Amit R, Enzel Y, Gillespie A R. 2010. Active sand seas and the formation of desert loess. Quat Sci Rev, 29: 2087–2098CrossRefGoogle Scholar
  12. Crouvi O, Shepanski K, Amit R, Gillespie A R, Enzel Y. 2012. Multiple dust sources in the Sahara Desert: The importance of sand dunes. Geophys Res Lett, 39: L13401, doi: 10.1029/2012GL052145CrossRefGoogle Scholar
  13. Cui M C, Lu H Y, Sweeney M, Mason J, Feng H, Xu Z. 2015. PM10 emission flux in the Tengger Desert and Mu Us sand field, northern China, measured by PI-SWERL (in Chinese). Chin Sci Bull, 60: 1–10Google Scholar
  14. Currell M J, Han D, Chen Z, Cartwright I. 2012. Sustainability of groundwater usage in northern China: Dependence of paleowaters and effects on water quality, quantity and ecosystem health. Hydrol Process, 26: 4050–4066CrossRefGoogle Scholar
  15. Dong Z, Wang X, Liu L. 2000. Wind erosion in arid and semiarid China: An overview. J Soil Water Conserv, 55: 439–444Google Scholar
  16. Du J, Yan P, Dong Y. 2010. The progress and prospects of nebkhas in arid areas. J Geogr Sci, 20: 712–728CrossRefGoogle Scholar
  17. Du H, Xue X, Wang T, Deng X. 2015. Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res, 17: 193–204CrossRefGoogle Scholar
  18. Eytemezian V, Nikolich G, Ahonen S, Pitchford M, Sweeney M, Purcell R, Gillies J, Kuhns H. 2007. The Portable In Situ Wind Erosion Laboratory (PI-SWERL): A new method to measure PM10 windblown dust properties and potential for emissions. Atmos Environ, 41: 3789–3796CrossRefGoogle Scholar
  19. Eytemezian V, Gillies J A, Shinoda M, Nikolich G, King J, Bardis A R. 2014. Accounting for surface roughness on measurements conducted with PI-SWERL: Evaluation of a subjective visual approach and a photogrammetric technique. Aeolian Res, 13: 35–50CrossRefGoogle Scholar
  20. Ginoux P, Propsero J M, Gill T E, Hsu N C, Zhao M. 2012. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys, 50: RG3005, doi: 10.1029/2012RG000388Google Scholar
  21. Goossens D, Buck B. 2009. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA. J Environ Manage, 90: 3458–3469CrossRefGoogle Scholar
  22. Grini A, Zender C S, Colarco P R. 2002. Saltation sandblasting behavior during mineral dust aerosol production. Geophys Res Lett, 29: 1868. doi: 10.1029/2002GL015248CrossRefGoogle Scholar
  23. Houser C A, Nickling W G. 2001. The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa. Earth Surf Process Landf, 26: 491–505CrossRefGoogle Scholar
  24. Jiao J T, Zhang X T, Wang X S. 2015. Satellite-based estimates of groundwater depletion on the Badain Jaran Desert, China. Nat Sci Reports, 5: 8960CrossRefGoogle Scholar
  25. King J, Etyemezian V, Sweeney M, Buck B J, Nikolich G. 2011. Dust emission variability at the Salton Sea, California, USA. Aeolian Res, 3: 67–79CrossRefGoogle Scholar
  26. Kohfeld K E, Reynolds R L, Pelletier J D, Nickling B. 2005. Linking the scales of observation, process, and modeling of dust emissions. Eos, 86: 113–114CrossRefGoogle Scholar
  27. Kuenen P H. 1960. Experimental abrasion 4: Eolian action. J Geol, 68: 427–449CrossRefGoogle Scholar
  28. Liu T S. 1985. Loess and the Environment (in Chinese). Beijing: Science PressGoogle Scholar
  29. Lu H, An Z. 1998. Pretreated methods on loess-paleosol samples granulometry. Chin Sci Bull, 43: 237–240CrossRefGoogle Scholar
  30. Lu H Y, Sun D H. 2000. Pathways of dust input into the Chinese Loess Plateau during the last glacial and interglacial periods. Catena, 40: 251–261CrossRefGoogle Scholar
  31. Mason J A, Swinehart J B, Lu H Y, Miao X, Cha P, Zhou Y. 2008. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s. Geomorphology, 102: 351–363CrossRefGoogle Scholar
  32. Muhs D R. 2013. The geologic record of dust in the Quaternary. Aeolian Res, 9: 3–48CrossRefGoogle Scholar
  33. Nickling W G, Eccelstone M. 1981. The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology, 28: 505–510CrossRefGoogle Scholar
  34. Okin G S, Bullard J E, Reynolds R L, Ballantine J C, Schepanski K, Todd M C, Belnap J, Baddock M C, Gill T E, Miller M E. 2011. Dust: Small-scale processes with global consequences. Eos, 92: 241–242CrossRefGoogle Scholar
  35. Prospero J M, Ginoux P, Torres O, Nicholson S E, Gill T E. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev Geophys, 40, doi: 10.1029/2000RG000095Google Scholar
  36. Pye K. 1998. The nature, origin and accumulation of loess. Quat Sci Rev, 14: 653–667CrossRefGoogle Scholar
  37. Schepanski K, Tegen I, Macke A. 2012. Comparison of satellite based observations of Saharan dust source areas. IEEE Trans Geosci Remote Sensing, 123: 90–97Google Scholar
  38. Shao Y. 2001. A model for mineral dust emission. J Geophys Res, 106: 20239–20254CrossRefGoogle Scholar
  39. Shao Y, Wyroll K H, Chappell A, Huang J, Lin Z, Mc Tainsh G H, Mikami M, Tanaka T Y, Wang X, Yoon S. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Res, 2: 181–204CrossRefGoogle Scholar
  40. Shao Y, Raupach M R, Findlater P A. 1993. Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res, 98: 12719–12726CrossRefGoogle Scholar
  41. Shi P, Yan P, Yuan Y, Nearing M A. 2004. Wind erosion research in China: Past, present and future. Prog Phys Geog, 28: 366–386CrossRefGoogle Scholar
  42. Sun J, Zhang, M, Liu T. 2001. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J Geophys Res, 106: 10325–10333CrossRefGoogle Scholar
  43. Sweeney M, Etyemezian V, Macpherson T, Nickling W, Gillies J, Nikolich G, Mc Donald E. 2008. Comparison of PI-SWERL with dust emission measurements from a straight-line field wind tunnel. J Geophys Res, 113: F01012, doi: 10.1029/2007JF000830Google Scholar
  44. Sweeney M R, Mc Donald E V, Etyemezian V. 2011. Quantifying dust emission from desert landforms, eastern Mojave Desert, USA. Geomorphology, 135: 21–34CrossRefGoogle Scholar
  45. Sweeney M R, Mason J A. 2013. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. J Geophys Res, 118, doi: 10/1002/jgrf.20101Google Scholar
  46. Tegen I. 2003. Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev, 22: 1821–1834CrossRefGoogle Scholar
  47. Uematsu M, Duce R A, Prospero J M, Chen L, Merrill J T, Mc Donald R L. 1983. Transport of mineral aerosol from Asia of the north Pacific Ocean. J Geophys Res, 88: 5343–5352CrossRefGoogle Scholar
  48. VanCuren R A, Cahill T A. 2002. Asian aerosols in North America: Frequency and concentration of fine dust. J Geophys Res, 107, doi: 10.1029/2002JD002204Google Scholar
  49. Wang X, Dong Z, Yan P, Yang Z, Hu Z. 2005. Surface sample collection and dust source analysis in northwestern China. Catena, 59: 35–53CrossRefGoogle Scholar
  50. Wang X, Zhou Z, Dong Z. 2006. Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: An examination based on dust storm frequency from 1960 to 2003. Geomorphology, 81: 292–308CrossRefGoogle Scholar
  51. Wang X, Zhang C, Zhang J, Hua T, Lang L, Zhang X, Wang L. 2010. Nebkha formation: Implications for reconstructing environmental changes of the past several centuries in the Ala Shan Plateau, China. Paleogeogr Paleoclimatol Paleoecol, 297: 697–706CrossRefGoogle Scholar
  52. Whalley W B, Marshall J R, Smith B J. 1982. Origin of desert loess from some experimental observations. Nature, 300: 433–435CrossRefGoogle Scholar
  53. Wright J, Smith B, Whalley B. 1998. Mechanisms of loess-sized quartz silt production and their relative effectiveness: Laboratory simulations. Geomorphology, 23: 15–34CrossRefGoogle Scholar
  54. Xu Z, Mason J, Lu H. 2014. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China. Geomorphology, 228: 486–503CrossRefGoogle Scholar
  55. Xuan J, Sokolik I N. 2002. Characterization of sources and emission rates of mineral dust in northern China. Atmos Environ, 36: 4863–4876CrossRefGoogle Scholar
  56. Yan P, Dong Z, Dong G, Zhang X, Zhang Y. 2001. Preliminary results of using 137Cs to study wind erosion in the Qinghai-Tibet Plateau. J Arid Environ, 47: 443–452CrossRefGoogle Scholar
  57. Yang X, Rost K T, Lehmkuhl F, Zhenda Z, Dodson J. 2004. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quatern Int, 118–119: 69–85CrossRefGoogle Scholar
  58. Yang Y, Qu Z, Shi P, Liu L, Zhang G, Tang Y, Hu X, Lv Y, Xiong Y, Wang J, Shen L, Lv L, Sun S. 2014. Wind regime and sand transport in the corridor between Badain Jaran and Tengger deserts, central Alxa Plateau, China. Aeolian Res, 12: 143–156CrossRefGoogle Scholar
  59. Zhang B, Tsunekawa A, Tsubo M. 2008. Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Global Planet Change, 60: 487–504CrossRefGoogle Scholar
  60. Zhao W, Sun Y, Balsam W, Lu H, Liu L, Chen J, Ji J. 2014. Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts: Implications for sources and dispersal. Scientific Reports, 4: 5837Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mark R. Sweeney
    • 1
  • HuaYu Lu
    • 2
  • MengChun Cui
    • 2
  • Joseph A. Mason
    • 3
  • Han Feng
    • 2
  • ZhiWei Xu
    • 2
  1. 1.Department of Earth SciencesUniversity of South DakotaVermillionUSA
  2. 2.Laboratory of Earth Surface Process and Environment, School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina
  3. 3.Department of GeographyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations