Advertisement

Science China Earth Sciences

, Volume 58, Issue 12, pp 2357–2362 | Cite as

On the material dependence of experimental shear fracture orientation

  • Enrique Gomez-Rivas
  • Albert Griera
Discussion

Abstract

It is not uncommon to observe shear fractures in ductile rocks oriented at more than 45° with respect to the maximum compression direction. Since these orientations cannot be explained with the classic Mohr-Coulumb or Tresca yield criteria, Zheng et al. (Journal of Structural Geology, 35: 1394–1405, 2011) proposed the maximum effective moment (MEM) failure criterion. This rule suggests that shear fractures in ductile rocks form at ~55° with the maximum compression axis and that this orientation is material-independent and, therefore, universal. Zheng et al. (Science China: Earth Sciences, 57(11): 2819–2824, 2014) used data from our own experiments as supporting evidence of their failure criterion. In this contribution we discuss why shear fracture formation in ductile rocks indeed strongly depends on the mechanical properties of the deforming medium, and why experimental data should not be taken to prove the validity of the MEM criterion. The formation mechanisms and orientations of shear fractures in our experiments significantly vary depending on the material strength and degree and type of anisotropy (composite and intrinsic). We therefore demonstrate using experimental data that a universal failure angle in ductile and anisotropic rocks does not apply. Additionally, we highlight some inconsistencies of the MEM criterion.

Keywords

shear fracture anisotropy fracture orientation material properties failure criteria ductile deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bons P D, Druguet E, Castaño L M, Elburg M A. 2008. Finding what is now not there anymore: Recognizing missing fluid and magma volumes. Geology, 36: 851–854CrossRefGoogle Scholar
  2. Collettinni C, Niejmeijer A, Viti C, Marone C. 2009. Fault zone fabrics and fault weakness. Nature, 462: 907–910CrossRefGoogle Scholar
  3. Fagereng A, Remitti F, Sibson R H. 2010. Shear veins observed within anisotropic fabric at high angles to the maximum compressive stress. Nat Geosci, 3: 482–485CrossRefGoogle Scholar
  4. Fagereng A. 2013. On stress and strain in a continuous-discontinuous shear zone undergoing simple shear and volume loss. J Struct Geol, 50: 44–53CrossRefGoogle Scholar
  5. Gomez-Rivas E, Bons P D, Griera A, Carreras J, Druguet E, Evans L. 2007. Strain and vorticity analysis using small-scale faults and associated drag folds. J Struct Geol, 29: 1882–1899CrossRefGoogle Scholar
  6. Gomez-Rivas E. 2008. Localización de deformación en medios dúctiles y anisótropos: estudio de campo, experimental y numérico. PhD thesis. Universitat Autònoma de Barcelona. http://hdl.handle.net/10803/3445Google Scholar
  7. Gomez-Rivas E, Griera A. 2009. Influence of mechanical anisotropy on shear fracture development. Trabajos de Geología, 29: 305–311Google Scholar
  8. Gomez-Rivas E, Griera A. 2011. Strain rate influence on fracture development in experimental ductile multilayers. Tectonophysics, 502: 345–357CrossRefGoogle Scholar
  9. Gomez-Rivas E, Griera A. 2012. Shear fractures in anisotropic ductile materials: An experimental approach. J Struct Geol, 34: 61–76CrossRefGoogle Scholar
  10. Gomez-Rivas E, Griera A, Llorens M G. 2015. Fracturing of ductile anisotropic multilayers: Influence of material strength. Solid Earth, 6: 497–514CrossRefGoogle Scholar
  11. Graham R H. 1980. The role of shear belts in the structural evolution of the South Harris igneous complex. J Struct Geol, 2: 29–37CrossRefGoogle Scholar
  12. Griera A, Bons P D, Jessell M W, Lebensohn R A, Evans L, Gomez-Rivas E. 2011. Strain localization and porphyroclast rotation. Geology, 39: 275–278CrossRefGoogle Scholar
  13. Griera A, Llorens M G, Gomez-Rivas E, Bons P D, Jessell M W, Evans L A, Lebensohn R. 2013. Numerical modelling of porphyroclast and porphyroblast rotation in anisotropic rocks. Tectonophysics, 587: 4–29CrossRefGoogle Scholar
  14. Jaeger J C, Cook N G W. 1979. Fundamentals of Rock Mechanics. 3rd ed. London: Chapman and HallGoogle Scholar
  15. Mancktelow N S. 2002. Finite-element modelling of shear zone development in viscoelastic materials and its implications for localisation of partial melting. J Struct Geol, 24: 1045–1053CrossRefGoogle Scholar
  16. Mancktelow N S, Pennacchioni G. 2005. The control of precursor brittle fracture and fluid-rock interaction on the development of single and paired ductile shear zones. J Struct Geol, 27: 645–661CrossRefGoogle Scholar
  17. Misra S, Mandal N, Chakraborty C. 2009. Formation of Riedel shear fractures in granular materials: Findings from analogue shear experiments and theoretical analyses. Tectonophysics, 471: 253–259CrossRefGoogle Scholar
  18. Pennacchioni G, Mancktelow N S. 2007. Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions. J Struct Geol, 29: 1757–1780CrossRefGoogle Scholar
  19. Pollard D D, Fletcher R C. 2005. Fundamentals of Structural Geology. Cambridge: Cambridge University PressGoogle Scholar
  20. Ramsay J G. 1980. Shear zone geometry: A review. J Struct Geol, 2: 83–99CrossRefGoogle Scholar
  21. Schmalholz S M, Schmid D W, Fletcher R C. 2008. Evolution of pinch-and-swell structures in a power-law layer. J Struct Geol, 30: 649–663CrossRefGoogle Scholar
  22. Scholz C H. 2007. Fault mechanics. In: Schubert G, ed. Treatise on Geophysics. Amsterdam: Elsevier. 441–483CrossRefGoogle Scholar
  23. Tong H. 2012. Comment and some questions on “Puzzles and the maximum effective moment (MEM) criterion in structural Geology”. J Struct Geol, 36: 81–84CrossRefGoogle Scholar
  24. Twiss R J, Moores E M. 1992. Structural Geology. New York: Freeman and CompanyGoogle Scholar
  25. Zheng Y D, Wang T, Ma M, Davis G A. 2004. Maximum effective moment criterion and the origin of low-angle normal faults. J Struct Geol, 26: 271–285CrossRefGoogle Scholar
  26. Zheng Y D, Wang T, Zhang J J. 2011. Puzzles and the maximum effective moment (MEM) criterion in structural geology. J Struct Geol, 35: 1394–1405Google Scholar
  27. Zheng Y D, Zhang J J, Wang T. 2012. Reply to comment and some questions on “Puzzles and the maximum-effective-moment (MEM) criterion in structural geology”. J Struct Geol, 36: 85–87CrossRefGoogle Scholar
  28. Zheng Y D, Zhang J J, Wang T. 2014. Interpretation of the experimental data provided by Gómez-Rivas and Griera (2012) in terms of the MEM-criterion. Sci China Earth Sci, 57: 2819–2824CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Geology and Petroleum Geology, School of Geosciences, King’s CollegeUniversity of AberdeenAberdeenUK
  2. 2.Departament de GeologiaUniversitat Autònoma de BarcelonaBellaterra (Cerdanyola del Vallès)Spain

Personalised recommendations