Science China Earth Sciences

, Volume 59, Issue 1, pp 95–110 | Cite as

Origin of Baotoudong syenites in North China Craton: Petrological, mineralogical and geochemical evidence

  • XiaoLu Niu
  • JingSui Yang
  • Fei Liu
  • HongYu Zhang
  • MingChun Yang
Research Paper


Baotoudong syenite pluton is located to the east of Baotou City, Inner Mongolia, the westernmost part of the Triassic alkaline magmatic belt along the northern margin of the North China Craton (NCC). Zircon U-Pb age, petrological, mineralogical and geochemical data of the pluton were obtained in this paper, to constrain its origin and mantle source characteristics. The pluton is composed of nepheline-clinopyroxene syenite and alkali-feldspar syenite, with zircon U-Pb age of 214.7±1.1 Ma. Diopside (cores)-aegirine-augite (rims), biotite, orthoclase and nepheline are the major minerals. The Baotoudong syenites have high contents of rare earth elements (REE), and are characterized by enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE; e.g., Rb, Ba, Sr), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE). They show enriched Sr-Nd isotopic compositions with initial 87Sr/86Sr ranging from 0.7061 to 0.7067 and εNd(t) values from–9.0 to–11.2. Mineralogy, petrology and geochemical studies show that the parental magma of the syenites is SiO2-undersaturated potassic-ultrapotassic, and is characterized by high contents of CaO, Fe2O3, K2O, Na2O and fluid compositions (H2O), and by high temperature and high oxygen fugacity. The syenites were originated from a phlogopite-rich, enriched lithospheric mantle source in garnet-stable area (>80 km). The occurrence of the Baotoudong syenites, together with many other ultrapotassic, alkaline complexes of similar ages on the northern margin of the NCC in Late Triassic implies that the lithospheric mantle beneath the northern margin of the NCC was previously metasomatized by melts/fluids from the subducted, altered paleo-Mongolian oceanic crust, and the northern margin of the craton has entered into an extensively extensional regime as a destructive continental margin in Late Triassic.


zircon U-Pb age mineralogy geochemistry Baotoudong syenites ultrapotassic alkaline rocks Triassic mantle metasomatism North China Craton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11430_2015_5216_MOESM1_ESM.pdf (233 kb)
Supplementary material, approximately 223 KB.


  1. Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59–79CrossRefGoogle Scholar
  2. Aoki K. 1964. Clinopyroxenes from alkaline rocks of Japan. Am Mineral, 49: 1199–1223Google Scholar
  3. Avanzinelli R, Elliott T, Tommasini S, Conticelli S. 2008. Constraints on the genesis of potassic-rich Italian volcanic rocks from U/Th disequilibrium. J Petrol, 49: 195–223CrossRefGoogle Scholar
  4. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S. 2009. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos, 113: 213–217CrossRefGoogle Scholar
  5. Benisek A, Kroll H, Cemic L. 2004. New development in two-feldspar thermometry. Am Mineral, 89: 1496–1504CrossRefGoogle Scholar
  6. Boynton W V. 1984. Geochemistry of the Earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. New York: Elsevier. 63–114CrossRefGoogle Scholar
  7. Chen B, Jahn B M, Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotopic compositions of subduction-and collision-related magmas and forearc sediments. J Asian Earth Sci, 34: 245–257CrossRefGoogle Scholar
  8. Chen B, Jahn B M, Wilde S, Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328: 157–182CrossRefGoogle Scholar
  9. Chen B, Niu X L, Wang Z Q, Gao L, Wang C. 2013. Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton. Sci China Earth Sci, 56: 1294–1307Google Scholar
  10. Conticelli S, Carlson R W, Widom E, Serri G. 2007. Chemical and isotopic composition (Os, Pb, Nd, and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic, and ultrapotassic mafic rocks from the Italian peninsula: Inferences on the nature of their mantle sources. In: Beccaluva L, Bianchini G, Wilson M, eds. Cenozoic Volcanism in the Mediterranean Area. Geol Soc Am Spec Pap, 418: 171–202CrossRefGoogle Scholar
  11. Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G. 2009. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a postcollisional geodynamic setting. Lithos, 107: 68–92CrossRefGoogle Scholar
  12. Conticelli S, Peccerillo A. 1992. Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: Petrogenesis and inferences on the evolution of the mantle sources. Lithos, 28: 221–240CrossRefGoogle Scholar
  13. Deer W A, Howie R, Zussman J. 1992. Introduction to the rock-forming minerals. New Jersey: Prentice Hall. 712Google Scholar
  14. Duggen S, Hoernle K, Bogaard P V D, Garbe-schönberg D. 2005. Post-collisional transition from subduction to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. J Petrol, 46: 1155–1201CrossRefGoogle Scholar
  15. Feldstein S N, Lange R A. 1999. Pliocene potassic magmas from the Kings River Region, Sierra Nevada, California: Evidence for melting of a subduction modified mantle. J Petrol, 40: 1301–1320CrossRefGoogle Scholar
  16. Foley S F. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28: 435–453CrossRefGoogle Scholar
  17. Foley S F, Venturelli G, Green D H, Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Sci Rev, 24: 81–134CrossRefGoogle Scholar
  18. Frey F A, Green D H. 1974. The mineralogy and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta, 38: 1023–1059CrossRefGoogle Scholar
  19. Gaetani G A, Grove T L, Bryan W B. 1993. The influence of water on the petrogenesis of subduction-related igneous rocks. Nature, 365: 332–334CrossRefGoogle Scholar
  20. Gibb F G F. 1972. The zoned clinopyroxenes of the Shint Isles Sill, Scotland. J Petrol, 14: 203–230CrossRefGoogle Scholar
  21. Iddings J P. 1892. The origin of igneous rocks. Bull Phil Soc Washington. 12Google Scholar
  22. Jahn B M, Auvray B, Cornichet J, Bai Y L, Shen Q H, Liu D Y. 1987. 3.5 Ga old amphibolites from eastern Hebei province, China: Field occurrence, petrology, Sm-Nd isochron age and REE geochemistry. Precambrian Res, 34: 311–346CrossRefGoogle Scholar
  23. Jahn B M, Auvray B, Shen Q H, Liu D Y, Zhang Z Q, Dong Y J, Ye X J, Zhang Q Z, Cornichet J, Mace J. 1988. Archean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Res, 38: 381–403CrossRefGoogle Scholar
  24. Jian P, Liu D Y, Kröner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q, Ren J S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101: 233–259CrossRefGoogle Scholar
  25. Kushiro I. 1960. Si-Al relation in clinopyroxenes from igneous rocks. Am J Sci, 258: 548–554CrossRefGoogle Scholar
  26. Langmuir C H, Vocke Jr R D, Hanson G N, Hart S R. 1978. A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett, 37: 380–392CrossRefGoogle Scholar
  27. Le Maitre R W, Bateman P, Dudek A, Keller J, Le Bas M J L, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Woodlley A R, Zanettin B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: BlackwellGoogle Scholar
  28. Liu D, Zhao Z D, Zhu D C, Niu Y L, DePaolo D J, Harrison T M, Mo X X, Dong G C, Zhou S, Sun C G, Zhang Z C, Liu J L. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta, 143: 207–231CrossRefGoogle Scholar
  29. Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20: 339–342CrossRefGoogle Scholar
  30. Ludwig K R. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Spec Publ, No. 4: 1–71Google Scholar
  31. Ma X, Chen B, Chen J F, Niu X L. 2013. Zircon SHRIMP U-Pb age, geochemical, Sr-Nd isotopic, and in-situ Hf isotopic data of the Late Carboniferous-Early Permian plutons in the northern margin of the North China Craton. Sci China Earth Sci, 56: 126–144CrossRefGoogle Scholar
  32. McInnes B I A, Cameron E M. 1994. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth Planet Sci Lett, 122: 125–141CrossRefGoogle Scholar
  33. Morimoto N. 1988. Nomenclature of pyroxene. Mineral Mag, 52: 535–550CrossRefGoogle Scholar
  34. Mu B L, Shao J A, Chu Z Y, Yan G H, Qiao G S. 2001. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei province, China (in Chinese with English abstract). Acta Petrol Sin, 17: 108–121Google Scholar
  35. Mu B L, Yan G H. 1992. Geochemistry of Triassic alkaline or subalkaline igneous complexes in the Yan-Liao area and their significance (in Chinese with English abstract). Acta Geol Sin, 66: 108–121Google Scholar
  36. Müntener O, Kelemen P, Grove T. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contrib Mineral Petrol, 141: 643–658CrossRefGoogle Scholar
  37. Nash W P, Wilkinson J E G. 1970. Shonkin Sag Laccolith, Montana. I. Mafic minerals and estimates of temperature, pressure, oxygen fugacity and silica activity. Contrib Mineral Petrol, 25: 241–269CrossRefGoogle Scholar
  38. Niu X L, Chen B, Liu A K, Suzuki K, Ma X. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Croton. Lithos, 149: 146–158CrossRefGoogle Scholar
  39. Niu X L, Chen B, Ma X. 2009. Clinopyroxenes from the Fanshan pluton (in Chinese with English abstract). Acta Petrol Sin, 25: 359–373Google Scholar
  40. Pichavant M, Macdonald R. 2007. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: Experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol, 154: 535–558CrossRefGoogle Scholar
  41. Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394CrossRefGoogle Scholar
  42. Ren R, Mu B L, Han B F, Zhang L, Chen J F, Xu Z, Song B. 2009. Zircon SHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafitesyenite complex in Hebei province, China (in Chinese with English abstract). Acta Petrol Sin, 25: 588–594Google Scholar
  43. Rittmann A. 1960. Vulkane und Ihre Tätigkeit. Stuttgart: Ferdinand Enke Verlag. 1–336Google Scholar
  44. Rosenbusch H. 1910. Elemente der Gesteinslehre. 3rd ed. Stuttgart: Schweizerbart Science Publishers JohannesstrGoogle Scholar
  45. Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier-Pergamon. 1–64CrossRefGoogle Scholar
  46. Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press. 486–641Google Scholar
  47. Shi Y R, Liu D Y, Jian P, Zhang Q, Zhang F Q, Miao L C, Shi G H, Zhang L H, Tao H. 2005. Zircon SHRIMP dating of K-rich granites in Sonidzuqi, central Inner Mongolia. Geol Bull Chin, 25: 424–428Google Scholar
  48. Shi Y R, Liu D Y, Zhang Q, Jian P, Zhang F Q, Miao L C, Shi G H, Zhang L H, Tao H. 2004. SHRIMP Dating of Diorites and Granites in Southern Sonidzuqi, Inner Mongolia. Acta Geol Sin, 78: 789–799Google Scholar
  49. Sisson T W, Grove T L. 1993a. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113: 143–166CrossRefGoogle Scholar
  50. Sisson T W, Grove T L. 1993b. Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol, 113: 167–184CrossRefGoogle Scholar
  51. Spath A, Le Roex A P, Duncan R A. 1996. The geochemistry of lavas from the Comores Archipelago, western Indian ocean: Petrogenesis and mantle source region characteristics. J Petrol, 37: 961–991CrossRefGoogle Scholar
  52. Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc London Spec Publ, 42: 313–345CrossRefGoogle Scholar
  53. Tang Y J, Zhang H F, Ying J F. 2014. Genetic significance of Triassic alkali-rich intrusive rocks in the Yinshan and neighboring areas (in Chinese with English abstract). Acta Petrol Sin, 30: 2031–2040Google Scholar
  54. Thibault Y, Edgar A E, Lloyd F E. 1992. Experimental investigation of melts from a carbonated phlogopite lherzolite: Implications for metasomatism in the continental lithsopheric mantle. Am Mineral, 77: 784–794Google Scholar
  55. Tommasini S, Avanzinelli R, Conticelli S. 2011. The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci Lett, 301: 469–478CrossRefGoogle Scholar
  56. Verhoogen J. 1962. Distribution of titanium between silicates and oxides in igneous rocks. Am J Sci, 260: 211–220CrossRefGoogle Scholar
  57. Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Vonquadt A, Roddick J C, Speigel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandard Newsletter, 19: 1–23CrossRefGoogle Scholar
  58. Windley B F, Alexelev D, Xiao W J, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc London, 164: 31–47CrossRefGoogle Scholar
  59. Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72CrossRefGoogle Scholar
  60. Wu F Y, Yang J H, Liu X M. 2005. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China (in Chinese with English abstract). Geol J China Univ, 11: 305–317Google Scholar
  61. Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22: 1609, doi: 10.1029/2002TC001484CrossRefGoogle Scholar
  62. Yan G H, Mu B L, Xu B L, He G Q, Tan L K, Zhao H, He Z F, Zhang R H, Qiao G S. 1999. Triassic alkaline intrusions in the Yanliao-Yinshan area: Their chronology, Sr, Nd and Pb isotopic characteristics and their implications. Sci China Ser D-Earth Sci, 42: 582–587CrossRefGoogle Scholar
  63. Yan G H, Tan L K, Xu B L, Mu B L, Shao H X, Chen T L, Tong Y, Ren K X, Yang B. 2001. Petrogeochemcial characteristics of Indosinian alkaline intrusions in Yinshan Area (in Chinese with English abstract). Acta Petrol Mineral, 20: 281–292Google Scholar
  64. Yang J H, Sun J F, Zhang M, Wu F Y, Wilde S A. 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem Geol, 328: 149–167CrossRefGoogle Scholar
  65. Zhai M G. 2004. 2.1–1.7 Ga geological event group and its geotectonic significance (in Chinese with English abstract). Acta Petrol Sin, 20: 343–1354Google Scholar
  66. Zhang S H, Zhao Y, Kröner A, Liu X M, Xie L W, Chen F K. 2009. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int J Earth Sci, 98: 1441–1467CrossRefGoogle Scholar
  67. Zhang S H, Zhao Y, Song B, Liu D Y. 2007a. Petrogenesis of the middle Devonian Gushan diorite pluton on the northern margin of the North China block and its tectonic implications. Geol Mag, 144: 553–568CrossRefGoogle Scholar
  68. Zhang S H, Zhao Y, Song B, Yang Z Y, Hu J M, Wu H. 2007b. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Paleozoic active continental margin. J Geol Soc Lond, 164: 451–463CrossRefGoogle Scholar
  69. Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202CrossRefGoogle Scholar
  70. Zhao Z D, Mo X X, Dilek Y, Niu Y, DePaolo D J, Robinson P, Zhu D, Sun C, Dong G, Zhou S, Luo Z, Hou Z. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190–212CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • XiaoLu Niu
    • 1
  • JingSui Yang
    • 1
  • Fei Liu
    • 1
  • HongYu Zhang
    • 2
  • MingChun Yang
    • 3
  1. 1.State Key Laboratory of Continental Tectonics and Dynamics, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  2. 2.Institute of Earth SciencesChina University of GeosciencesBeijingChina
  3. 3.Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations