Advertisement

Science China Earth Sciences

, Volume 58, Issue 11, pp 1901–1909 | Cite as

A theoretical prediction of chemical zonation in early oceans (>520 Ma)

  • Chao LiEmail author
  • Meng Cheng
  • Thomas J. Algeo
  • ShuCheng Xie
Research Paper

Abstract

Early oceans (>520 Ma) were characterized by widespread water-column anoxia, stratification, and limited oxidant availability, which are comparable to the chemical characteristics of modern marine sedimentary pore-waters in productive continental margins. Based on this similarity and our current understanding of the formation mechanism of early Earth ocean chemistry, we propose an idealized chemical zonation model for early oceans that includes the following redox zones (from shallow nearshore to deep offshore regions): oxic, nitrogenous (NO 3 - -NO 2 - -enriched), manganous-ferruginous (Mn2+ or Fe2+-enriched), sulfidic (H2S-enriched), methanic (CH4-enriched), and ferruginous (Fe2+-enriched). These zones were dynamically maintained by a combination of processes including surface-water oxygenation by atmospheric free oxygen, nitrate reduction beneath the chemocline, nearshore manganese-iron reduction, sulfate reduction, methanogenesis, and hydrothermal Fe2+ inputs from the deep ocean. Our modified “euxinic wedge” model expands on previous versions of this model, providing a more complete theoretical framework for the chemical zonation of early Earth oceans that helps to explain observations of unusual Mo-S-C isotope patterns. This model may provide a useful foundation for future studies of ocean chemistry evolution and elemental biogeochemical cycles in early Earth history.

Keywords

Proterozoic early Cambrian oceanic redox chemistry anoxia euxinia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader M, Sansjofre P, Halverson G P, Busigny V, Trindade R I F, Kunzmann M, Nogueira A C R. 2014. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective. Earth Planet Sci Lett, 396: 1–13CrossRefGoogle Scholar
  2. Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem Geol, 268: 211–225CrossRefGoogle Scholar
  3. Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science, 297: 1137–1142CrossRefGoogle Scholar
  4. Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am J Sci, 282: 451–473CrossRefGoogle Scholar
  5. Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 106: 8123–7CrossRefGoogle Scholar
  6. Canfield D E, Ngombi-Pemba L, Hammarlund E U, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A C, El Albani A. 2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. Proc Nat Acad Sci USA, 110: 16736–16741CrossRefGoogle Scholar
  7. Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949–952CrossRefGoogle Scholar
  8. Canfield D E, Thamdrup B, Hansen J W. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta, 57: 3867–3883CrossRefGoogle Scholar
  9. Canfield D E, Thamdrup B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic’ would go away. Geobiology, 7: 385–392CrossRefGoogle Scholar
  10. Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Ann Rev Earth Planet Sci, 33: 1–36CrossRefGoogle Scholar
  11. Chen X, Ling H, Vance D, Shields-Zhou G A, Zhu M, Poulton S W, Och L M, Jiang S, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Comm, 6: 7142CrossRefGoogle Scholar
  12. Cheng M, Li C, Zhou L, Xie S. 2015a. Mo marine geochemistry and reconstruction of ancient ocean redox states. Sci China: Earth Sci, in pressGoogle Scholar
  13. Dahl T W, Hammarlund E U, Anbar A D, Bond D P G, Gill B C, Gordon G W, Knoll A H, Nielsen A T, Schovsbo N H, Canfield D E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Nat Acad Sci USA, 107: 17911–17915CrossRefGoogle Scholar
  14. Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, Yakushev E V, Böttcher M E, Brumsack H. 2010. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta, 74: 7100–7115CrossRefGoogle Scholar
  15. Ducklow H, McCallister S L. 2004. The biogeochemistry of carbon dioxide in the coastal oceans. In: Robinson A R, Brink K, eds. The Global Coastal Ocean-Multiscale Interdisciplinary Processes: The Sea. Cambridge: Harvard University Press. 269–315Google Scholar
  16. Eigenbrode J L, Freeman K H. 2006. Late Archean rise of aerobic microbial ecosystems. Proc Nat Acad Sci USA, 103: 15759–15764CrossRefGoogle Scholar
  17. Feng L, Li C, Huang J, Chang H, Chu X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform, South China. Precambr Res, 246: 123–133CrossRefGoogle Scholar
  18. Fennel K, Follows M, Falkowski P. 2005. The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci, 305: 526–545CrossRefGoogle Scholar
  19. Goldberg T, Archer C, Vance D, Poulton S W. 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim Cosmochim Acta, 73: 6502–6516CrossRefGoogle Scholar
  20. Goldberg T, Strauss H, Guo Q, Liu C. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 175–193CrossRefGoogle Scholar
  21. Ho T Y, Taylor G T, Astor Y, Varela R, Müller-Karger F, Scranton M I. 2004. Vertical and temporal variability of redox zonation in the water column of the Cariaco Basin: Implications for organic carbon oxidation pathways. Mar Chem, 86: 89–104CrossRefGoogle Scholar
  22. Holland H D. 2006. The oxygenation of the atmosphere and oceans. Phil Trans Royal Soc B: Biol Sci, 361: 903–915CrossRefGoogle Scholar
  23. Isley A E, Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res-Atmos, 1041: 15461–15477CrossRefGoogle Scholar
  24. Jensen M M, Kuypers M M M, Lavik G, Thamdrup B. 2008. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr, 53: 23–36CrossRefGoogle Scholar
  25. Jiang G, Kaufman A J, Christie-Blick N, Zhang S, Wu H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett, 261: 303–320CrossRefGoogle Scholar
  26. Jiang G, Wang X, Shi X, Zhang S, Xiao S, Dong J. 2010. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition. Earth Planet Sci Lett, 299: 159–168CrossRefGoogle Scholar
  27. Jin C, Li C, Peng X, Cui H, Shi W, Zhang Z, Luo G, Xie S. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Sci China: Earth Sci, 57: 579–591CrossRefGoogle Scholar
  28. Johnston D T, Poulton S W, Dehler C, Porter S, Husson J, Canfield D E, Knoll A H. 2010. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290: 64–73CrossRefGoogle Scholar
  29. Kah L C, Lyons T W, Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431: 834–838CrossRefGoogle Scholar
  30. Kendall B, Creaser R A, Gordon G W, Anbar A D. 2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim Cosmochim Acta, 73: 2534–2558CrossRefGoogle Scholar
  31. Kendall B, Komiya T, Lyons T W, Bates S M, Gordon G W, Romaniello S J, Jiang G, Creaser R A, Xiao S, McFadden K, Sawaki Y, Tahata M, Shu D, Han J, Li Y, Chu X, Anbar A D. 2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim Cosmochim Acta, 156: 173–193CrossRefGoogle Scholar
  32. Konovalov S K, Murray J W, Luther G W III. 2005. Basic processes of Black Sea biogeochemistry. Oceanography, 18: 24–35CrossRefGoogle Scholar
  33. Kump L R, Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett, 235: 654–662CrossRefGoogle Scholar
  34. Lehmann B, Nägler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35: 403–406CrossRefGoogle Scholar
  35. Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu, X. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80–83CrossRefGoogle Scholar
  36. Li C, Love G D, Lyons T W, Scott C T, Feng L, Huang J, Chang H, Zhang Q, Chu X. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett, 331–332: 246–256CrossRefGoogle Scholar
  37. Li C, Planavsky N J, Love G D, Reinhard C T, Hardisty D, Feng L J, Bates S M, Huang J, Zhang Q R, Chu X L, Lyons T W. 2015. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochim Cosmochim Acta, 150: 90–105CrossRefGoogle Scholar
  38. Li Y-H, Gregory S. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta, 38: 703–714CrossRefGoogle Scholar
  39. Libes S M. 2009. Introduction to Marine Biogeochemistry, 2nd ed. Elsevier, Academic Press. 169–324Google Scholar
  40. Loyd S J, Marenco P J, Hagadorn H W, Lyons T W, Kaufman A J, Sour-Tovar F, Corsetti F A. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California. Earth Planet Sci Lett, 339–340: 79–94CrossRefGoogle Scholar
  41. Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506: 307–315CrossRefGoogle Scholar
  42. Murray J W, Fuchsman C, Kirkpatrick J, Paul B, Konovalov S K. 2005. Species and signatures of nitrogen transformation in the suboxic zone of the Black Sea. Oceanography, 18: 36–47CrossRefGoogle Scholar
  43. Neubert N, Nägler T F, Böttcher M E. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36: 775–778CrossRefGoogle Scholar
  44. Och L M, Shields-Zhou G A, Poulton S W, Manning C, Thirlwall M F, Li D, Chen X, Ling H, Osborn T, Cremonese L. 2013. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambr Res, 225: 166–189CrossRefGoogle Scholar
  45. Ozaki K, Tajika E. 2013. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications for greenhouse climates. Earth Planet Sci Lett, 373: 129–139CrossRefGoogle Scholar
  46. Planavsky N J, Bekker A, Hofmann A, Owens J D, Lyons T W. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc Nat Acad Sci USA, 109: 18300–18305CrossRefGoogle Scholar
  47. Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638CrossRefGoogle Scholar
  48. Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements, 7: 107–112CrossRefGoogle Scholar
  49. Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3: 486–490CrossRefGoogle Scholar
  50. Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. Am J Sci, 298: 219–245CrossRefGoogle Scholar
  51. Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochem Perspect, 1: 1–220CrossRefGoogle Scholar
  52. Scholz F, Hensen C, Noffke A, Rohde A, Liebetrau V, Wallmann K. 2011. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—Response to ENSO-related oxygen fluctuations in the water column. Geochim Cosmochim Acta, 75: 7257–7276CrossRefGoogle Scholar
  53. Schunck H, Lavik G, Desai D K, Großkopf T, Kalvelage T, Löscher C R, Paulmier A, Contreras S, Siegel H, Holtappels M, Rosenstiel P, Schilhabel M B, Graco M, Schmitz R A, Kuypers M M M, LaRoche J. 2013. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One, 8: e68661Google Scholar
  54. Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459CrossRefGoogle Scholar
  55. Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem Geol, 324–325: 19–27CrossRefGoogle Scholar
  56. Thamdrup B. 2000. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, ed. Advances in Microbial Ecology. Vol. 16. New York: Springer. 41–84CrossRefGoogle Scholar
  57. Tyrrell T. 1999. The relative infuences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525–531CrossRefGoogle Scholar
  58. Wen H, Carignan J, Chu X, Fan H, Cloquet C, Huang J, Zhang Y, Chang H. 2014. Selenium isotopes trace anoxic and ferruginous seawater conditions in the Early Cambrian. Chem Geol, 390: 164–172CrossRefGoogle Scholar
  59. Wen H, Carignan J, Zhang Y, Fan H, Cloquet C, Liu S. 2011. Molybdenum isotopic records across the Precambrian-Cambrian boundary. Geology, 39: 775–778CrossRefGoogle Scholar
  60. Wen H, Fan H, Zhang Y, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim Cosmochim Acta, 164: 1–16CrossRefGoogle Scholar
  61. Wille M, Nägler T F, Lehmann B, Schröder S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453: 767–769CrossRefGoogle Scholar
  62. Wright J M, Colling A, Bearman G. 1995. Seawater: Its Composition, Properties and Behaviour, 2nd ed. New York: Pergamon Press. 166Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chao Li
    • 1
    Email author
  • Meng Cheng
    • 1
    • 2
  • Thomas J. Algeo
    • 1
    • 3
    • 4
  • ShuCheng Xie
    • 1
  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.School of Earth SciencesChina University of GeosciencesWuhanChina
  3. 3.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  4. 4.Department of GeologyUniversity of CincinnatiCincinnatiU.S.A.

Personalised recommendations