Science China Earth Sciences

, Volume 59, Issue 1, pp 17–24 | Cite as

Microbial D-amino acids and marine carbon storage

  • ZiLian ZhangEmail author
  • Qiang Zheng
  • NianZhi Jiao


In nature, there are two conformational types of amino acids: L- and D-isomers. The L-amino acids are the predominant form and are used mainly for protein synthesis, while the D-amino acids are few in quantity but more diverse in terms of their biological functions. D-amino acids are produced by many marine microbes, which are important players in carbon and energy cycles in the ocean. As the major constituent of the marine organic carbon pool, D-amino acids can persist in the water column for a long time before being further transformed by chemical or biological processes or transported through physical processes (such as absorption and aggregation). This article reviews the microbial synthesis of D-amino acids, their physiological function and metabolism in microbes, and the contribution of D-amino acids as a carbon source to the oceanic carbon reservoir.


microbe D-amino acid dissolved organic carbon marine carbon storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe H, Okuma E, Amano H, Noda H, Watanabe K. 1999. Role of free d- and l-alanine in the Japanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstream spawning migration. Comp Biochem Phys A, 123: 55–59CrossRefGoogle Scholar
  2. Auclair J, Patton R. 1950. On the occurrence of D-alanine in the haemolymph of the milkweed bug, oncopeltus fasciatus. Rev Can Biol, 9: 3Google Scholar
  3. Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Rev Microbiol, 5: 782–791CrossRefGoogle Scholar
  4. Barja I, Núñez L. 1999. Microcalorimetric measurements of the influence of glucose concentration on microbial activity in soils. Soil Biol Biochem, 31: 441–447CrossRefGoogle Scholar
  5. Brodowski S, Amelung W, Lobe I, Du Preez C C. 2005. Losses and biogeochemical cycling of soil organic nitrogen with prolonged arable cropping in the South African Highveld—Evidence from D- and L-amino acids. Biogeochemistry, 71: 17–42CrossRefGoogle Scholar
  6. Brown M, Lauro F, Demaere M, Muir L, Wilkins D, Thomas T, Riddle M, Fuhrman J, Andrews-Pfannkoch C, Hoffman J. 2012. Global biogeography of SAR11 marine bacteria. Mol Syst Biol, 8: 595CrossRefGoogle Scholar
  7. Brückner H, Westhauser T. 2003. Chromatographic determination of L-and D-amino acids in plants. Amino Acids, 24: 43–55CrossRefGoogle Scholar
  8. Dauwe B, Middelburg J J. 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol Oceanogr, 43: 782–798CrossRefGoogle Scholar
  9. Delfosse V, Girard E, Birck C, Delmarcelle M, Delarue M, Poch O, Schultz P, Mayer C. 2009. Structure of the archaeal pab87 peptidase reveals a novel self-compartmentalizing protease family. PLoS One, 4: e4712Google Scholar
  10. DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA, 89: 5685–5689CrossRefGoogle Scholar
  11. Eichinger M, Poggiale J C, Van Wambeke F, Lefevre D, Sempere R. 2006. Modelling DOC assimilation and bacterial growth efficiency in biodegradation experiments: A case study in the Northeast Atlantic Ocean. Aquat Microbial Ecol, 43: 139–151CrossRefGoogle Scholar
  12. Fernandes L, Garg A, Borole D V. 2014. Amino acid biogeochemistry and bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal. Deep-Sea Res Part I: Oceanogr Res Pap, 83: 81–92CrossRefGoogle Scholar
  13. Flemming H C, Wingender J. 2010. The biofilm matrix. Nature Rev Microbiol, 8: 623–633Google Scholar
  14. Forsum O, Svennerstam H, Ganeteg U, Näsholm T. 2008. Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol, 179: 1058–1069Google Scholar
  15. Gehlen M. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521–537CrossRefGoogle Scholar
  16. Giovannoni S, Rappé M. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman D, ed. Microbial Ecology of the Oceans. New York: Wiley. 47–84Google Scholar
  17. Gördes D, Kolukisaoglu Ü, Thurow K. 2011. Uptake and conversion of D-amino acids in Arabidopsis thaliana. Amino Acids, 40: 553–563CrossRefGoogle Scholar
  18. Halvorson H O, Spiegelman S. 1952. The inhibition of enzyme formation by amino acid analogues. J Bacteriol, 64: 207–221Google Scholar
  19. Herndl G J, Reinthaler T, Teira E, Aken H M V, Veth C, Pernthaler A, Pernthaler J. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 72: 2303–2309CrossRefGoogle Scholar
  20. Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta, 70: 2990–3010CrossRefGoogle Scholar
  21. Hill P W, Quilliam R S, DeLuca T H, Farrar J, Farrell M, Roberts P, Newsham K K, Hopkins D W, Bardgett R D, Jones D L. 2011. Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One, 6: e19220Google Scholar
  22. Hills G. 1949. Chemical factors in the germination of spore-bearing aerobes. The effects of amino-acids on the germination of Bacillus anthracis, with some observations on the relation of optical form to biological activity. Biochem J, 45: 363CrossRefGoogle Scholar
  23. Hochbaum A I, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. 2011. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol, 193: 5616–5622CrossRefGoogle Scholar
  24. Huang Y, Nishikawa T, Satoh K, Iwata T, Fukushima T, Homma H, Imai K. 1998. Urinary excretion of D-serine in human: Comparison of different ages and species. Biol Pharm Bull, 21: 156CrossRefGoogle Scholar
  25. Jensen P, Fenical W. 1995. The relative abundance and seawater requirements of Gram-positive bacteria in near-shore tropical marine samples. Microb Ecol, 29: 249–257CrossRefGoogle Scholar
  26. Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Rev Microbiol, 8: 593–599CrossRefGoogle Scholar
  27. Jørgensen N O G, Stepanaukas R, Pedersen A G U, Hansen M, Nybroe O. 2003. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol Ecol, 46: 269–280CrossRefGoogle Scholar
  28. Jørgensen N O G, Middelboe M. 2006. Occurrence and bacterial cycling of D-amino acid isomers in an estuarine environment. Biogeochemistry, 81: 77–94CrossRefGoogle Scholar
  29. Kaiser K, Benner R. 2008. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr, 53: 99–112CrossRefGoogle Scholar
  30. Kandler O, König H. 1978. Chemical composition of the peptidoglycanfree cell walls of methanogenic bacteria. Arch Microbiol, 118: 141–152CrossRefGoogle Scholar
  31. Kandler O, König H. 1998. Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci, 54: 305–308CrossRefGoogle Scholar
  32. Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev, 73: 310–347CrossRefGoogle Scholar
  33. Karner M B, DeLong E F, Karl D M. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507–510CrossRefGoogle Scholar
  34. Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T. 2004. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol, 70: 2906–2911CrossRefGoogle Scholar
  35. Kawasaki N, Benner R. 2006. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnol Oceanogr, 51: 2170–2180CrossRefGoogle Scholar
  36. Kim P M, Duan X, Huang A S, Liu C Y, Ming G L, Song H, Snyder S H. 2010. Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA, 107: 3175–3179CrossRefGoogle Scholar
  37. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. 2010. D-amino acids trigger biofilm disassembly. Science, 328: 627–629CrossRefGoogle Scholar
  38. Könneke M, Bernhard A E, José R, Walker C B, Waterbury J B, Stahl D A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437: 543–546CrossRefGoogle Scholar
  39. Lam H, Oh D C, Cava F, Takacs C N, Clardy J, de Pedro M A, Waldor M K. 2009. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science, 325: 1552–1555CrossRefGoogle Scholar
  40. Lee C, Bada J L. 1977. Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol Oceanogr, 22: 502–510CrossRefGoogle Scholar
  41. Li C, Yao X, Lu C D. 2009. Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1. Microbiology, 156: 60–71CrossRefGoogle Scholar
  42. Lomstein B A, Jorgensen B B, Schubert C J, Niggemann J. 2006. Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim Cosmochim Acta, 70: 2970–2989CrossRefGoogle Scholar
  43. Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M. 1999. Occurrence of free D-amino acids and aspartate racemases in hyperthermophilic Archaea. J Bacteriol, 181: 6560–6563Google Scholar
  44. McCarthy M D, Hedges J I, Benner R. 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281: 231–234CrossRefGoogle Scholar
  45. Miyoshi Y, Konno R, Sasabe J, Ueno K, Tojo Y, Mita M, Aiso S, Hamase K. 2012. Alteration of intrinsic amounts of D-serine in the mice lacking serine racemase and D-amino acid oxidase. Amino acids, 43: 1919–1931CrossRefGoogle Scholar
  46. Moriarty D, Hayward A. 1982. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments. Microb Ecol, 8: 1–14CrossRefGoogle Scholar
  47. Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T. 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol, 175: 6459–6466Google Scholar
  48. Nagata T, Meon B, Kirchman D. 2003. Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr, 48: 745–754CrossRefGoogle Scholar
  49. Nagata Y, Tanaka K, Iida T, Kera Y, Yamada R H, Nakajima Y, Fujiwara T, Fukumori Y, Yamanaka T, Koga Y. 1999. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta, 1435: 160–166CrossRefGoogle Scholar
  50. Ogawa H, Tanoue E. 2003. Dissolved organic matter in oceanic waters. J Oceanogr, 59: 129–147CrossRefGoogle Scholar
  51. Ohnishi M, Saito M, Wakabayashi S, Ishizuka M, Nishimura K, Nagata Y, Kasai S. 2008. Purification and characterization of serine racemase from a hyperthermophilic archaeon, Pyrobaculum islandicum. J Bacteriol, 190: 1359–1365CrossRefGoogle Scholar
  52. Pedersen A-GU, Thomsen T R, Lomstein B A, Jørgensen N O G. 2001. Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr, 46: 1358–1369CrossRefGoogle Scholar
  53. Ravenschlag K, Sahm K, Amann R. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol, 67: 387–395CrossRefGoogle Scholar
  54. Reeburgh W S. 1997. Figures summarizing the global cycles of biogeochemically important elements. Bull Ecol Soc Am, 78: 260–267Google Scholar
  55. Rydon H. 1947. D-amino acids in microbiological chemistry. Biochem J, 41: xxxviGoogle Scholar
  56. Schleifer K H, Kandler O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36: 407Google Scholar
  57. Snyder S H, Kim P M. 2000. D-amino acids as putative neurotransmitters: Focus on D-serine. Neurochem Res, 25: 553–560CrossRefGoogle Scholar
  58. Vollmer W, Blanot D, De Pedro M A. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev, 32: 149–167CrossRefGoogle Scholar
  59. Xu H J, Liu Y. 2011. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production. Water Res, 45: 5796–5804CrossRefGoogle Scholar
  60. Yokoyama T, Kan-no N, Ogata T, Kotaki Y, Sato M, Nagahisa E. 2003. Presence of free D-amino acids in microalgae. Biosci Biotechnol Biochem, 67: 388CrossRefGoogle Scholar
  61. Yoshimura T, Esak N. 2003. Amino acid racemases: Functions and mechanisms. J Biosci Bioeng, 96: 103–109CrossRefGoogle Scholar
  62. Zhang G, Sun H J. 2014. Racemization in reverse: Evidence that D-amino acid toxicity on earth is controlled by bacteria with racemases. PLoS One, 9: e92101Google Scholar
  63. Zhang Y, Sintes E, Chen J, Dai M, Jiao N, Herndl G J. 2009. Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol, 56: 65–79CrossRefGoogle Scholar
  64. Zhang Z, Li Z, Jiao N. 2014. Effect of D-amino acids of the EPS production and cell aggregation of Alteromonas macleodii stain JL2069. Curr Microbiol, 68: 751–755CrossRefGoogle Scholar
  65. Zhuang R, Chen H, Yao J, Li Z, Burnet J E, Choi M M F. 2011. Impact of beta-cypermethrin on soil microbial community associated with its bioavailability: A combined study by isothermal microcalorimetry and enzyme assay techniques. J Hazard Mater, 189: 323–328CrossRefGoogle Scholar
  66. Zobell C E. 1946. Marine Microbiology, A monograph on Hydrobacteriology. Waltham: Chronica Botanica PressGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and EcospheresXiamen UniversityXiamenChina

Personalised recommendations