Advertisement

Science China Earth Sciences

, Volume 58, Issue 12, pp 2260–2270 | Cite as

Observations and analysis of environment and acoustic field changed by the passage of typhoon Damrey in the Yellow Sea in 2012

  • GuangBing YangEmail author
  • LianGang Lü
  • YeLi Yuan
  • Ying Jiang
  • ZongWei Liu
  • ChunMei Yang
  • HongNing Liu
  • Zhao Chen
Research Paper

Abstract

In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two experiments just before and after the passage of typhoon Damrey, which is the strongest to affect the area north of the Yangtze River since 1949, in the Yellow sea in 2012. The data show that the temperature of the whole water column increases dramatically except the sea surface layer after the passage of Damrey while the salinity decreases obviously. The thermocline deepens and weakens, which leads to a change of internal wave activity. The transmission losses (TL) of the two experiments show that the environment change induced by typhoon can increase the TL as large as 8 dB at a distance of 9.2 km and depth of 15 m. The scintillation index (SI) of the sound intensity is simulated to estimate the change of the effect of internal wave activity on acoustic field showing that the SI decreases to a half after the typhoon’s passage. The normal mode structures of the two experiments are also significantly different due to the thermocline changes. In addition, the signal arrives earlier after the typhoon’s passage due to the water temperature increase.

Keywords

acoustic field typhoon Damrey thermocline internal wave Yellow Sea shallow sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel J R, Ostrovsky L A, Stepanyants Y A, Lynch J F. 2007. Internal solitons in the ocean and their effect on underwater sound. J Acoust Soc Am, 121: 695–722CrossRefGoogle Scholar
  2. Baggeroer A, Munk W. 1992. The Heard Island feasibility test. Phys Today, 45: 22–30CrossRefGoogle Scholar
  3. Chan H C, Chen C F. 2012. Underwater acoustic sensing applied to estimation of typhoon wind speed. Int J Remote Sens, 33: 7398–7412CrossRefGoogle Scholar
  4. Collins M D. 1993. A split-step Padé solution for the parabolic equation method. J Acoust Soc Am, 93: 1736–1742CrossRefGoogle Scholar
  5. Collins M D. 1995. User’s guide for RAM versions 1.0 and 1.0 pGoogle Scholar
  6. D’Asaro E A, Black P, Centurioni L, Harr P, Jayne S R, Lin I, Lee C M, Morzel J, Mrvaljevic R, Niiler P P. 2011. Typhoon-ocean interaction in the western North Pacific: Part 1. Oceanography, 24: 24–31CrossRefGoogle Scholar
  7. Dushaw B D, Worcester P F, Munk W H, Spindel R C, Mercer J A, Howe B M, Metzger K, Birdsall T G, Andrew R K, Dzieciuch M A. 2009. A decade of acoustic thermometry in the North Pacific Ocean. J Geophys Res, 114: C7021CrossRefGoogle Scholar
  8. Dushaw B D, Worcester P F, Dzieciuch M A, Menemenlis D. 2013. On the time-mean state of ocean models and the properties of long range acoustic propagation. J Geophys Res, 118: 4346–4362CrossRefGoogle Scholar
  9. Farmer D, Armi L. 1999. The generation and trapping of solitary waves over topography. Science, 283: 188–190CrossRefGoogle Scholar
  10. Gao D Z, Wang N, Wang H Z, Liu J Z. 2012. Acoustic monitoring of the thermocline height by acoustic intensity interference-pattern (in Chinese). Sci Sin-Phys Mech Astron, 42: 107–115CrossRefGoogle Scholar
  11. Gao W, Wang N, Wang H. 2008. Statistical geoacoustic inversion from vertical correlation of shallow water reverberation (in Chinese). Acta Acoust, 33: 109–115Google Scholar
  12. Geyer W R, Signell R. 1990. Measurements of tidal flow around a headland with a shipboard acoustic Doppler current profiler. J Geophys Res, 95: 3189–3197CrossRefGoogle Scholar
  13. Haury L R, Briscoe M G, Orr M H. 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature, 278: 312–317CrossRefGoogle Scholar
  14. Hester K C, Peltzer E T, Kirkwood W J, Brewer P G. 2008. Unanticipated consequences of ocean acidification: A noisier ocean at lower pH. Geophys Res Lett, 35: L19601CrossRefGoogle Scholar
  15. Kaneko A, Yamaguchi K, Lin J, Gohda N, Zheng H, Takasugi Y. 2006. Current structure measurements by the coastal acoustic tomography. J Acoust Soc Am, 120: 3001–3002CrossRefGoogle Scholar
  16. Kunze E, Dower J F, Beveridge I, Dewey R, Bartlett K P. 2006. Observations of biologically generated turbulence in a coastal inlet. Science, 313: 1768–1770CrossRefGoogle Scholar
  17. Kuperman W A, Ingenito F. 1977. Attenuation of the coherent component of sound propagating in shallow water with rough boundaries. J Acoust Soc Am, 61: 1178–1187CrossRefGoogle Scholar
  18. Lavery A C, Chu D, Moum J N. 2010. Observations of broadband acoustic backscattering from nonlinear internal waves: Assessing the contribution from microstructure. IEEE J Ocean Eng, 35: 695–709CrossRefGoogle Scholar
  19. Liu L, Fei J F, Cheng X P, Huang X G. 2013. Effect of wind-current interaction on ocean response during Typhoon KAEMI (2006). Sci China Earth Sci, 56: 418–433CrossRefGoogle Scholar
  20. Liu Z W, Yang Y M, Xu X M, Niu H Q. 2009. A method of acoustic transmission loss calculated with background noise removal-energy summation (in Chinese). J Xiamen Univ (Natural Sci), 48: 378–381Google Scholar
  21. Liu Z W, Sun C, Du J Y. 2013. The measure of environmental sensitivity in detection performance degradation (in Chinese). Acta Phys Sin, 62: 64303Google Scholar
  22. Lü L G, Qiao F L, Chen H X, Yuan Y L. 2006. Acoustic transmission in the cold eddy in the southern East China Sea. J Geophys Res, 111: C11SGoogle Scholar
  23. Ma B, Yang Y J. 2009. Detection and classification of typhoons using underwater acoustic sensors in the western Pacific Ocean. J Acoust Soc Am, 125: 2619CrossRefGoogle Scholar
  24. Mikhalevsky P N, Gavrilov A N. 2001. Acoustic thermometry in the Arctic Ocean. Polar Res, 20: 185–192CrossRefGoogle Scholar
  25. Milliman J D, Lin S W, Kao S J, Liu J P, Liu C S, Chiu J K, Lin Y C. 2007. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004 Geology, 35: 779–782CrossRefGoogle Scholar
  26. Munk W H, Forbes A M. 1989. Global ocean warming: An acoustic measure? J Phys Oceanogr, 19: 1765–1778CrossRefGoogle Scholar
  27. Newhall A E, Lin Y, Jan S, Lynch J F. 2012. Effects of tropical cyclones on underwater sound propagation. J Acoust Soc Am, 132: 1974CrossRefGoogle Scholar
  28. Pan A J, Guo X G, Xu J D, Huang J, Wan X F. 2012. Responses of Guangdong coastal upwelling to the summertime typhoons of 2006. Sci China Earth Sci, 55: 495–506CrossRefGoogle Scholar
  29. Sandstrom H, Elliot J A, Cchrane N A. 1989. Observing groups of solitary internal waves and turbulence with BATFISH and echo-sounder. J Phys Oceanogr, 19: 987–997CrossRefGoogle Scholar
  30. Tielbürger D, Finette S, Wolf S. 1997. Acoustic propagation through an internal wave field in a shallow water waveguide. J Acoust Soc Am, 101: 789–808CrossRefGoogle Scholar
  31. Tseng Y H, Jan S, Dietrich D E, Lin I I, Chang Y T, Tang T Y. 2010. Modeled oceanic response and sea surface cooling to typhoon Kai-Tak. Terr Atmos Ocean Sci, 21: 85–98CrossRefGoogle Scholar
  32. Wang A J, Gao S, Chen J, Li D Y. 2009. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMI” in Quanzhou Bay, Fujian Province, China. Chin Sci Bull, 54: 120–130CrossRefGoogle Scholar
  33. Wang G S. 2007. An analysis of the effects of wave-induced mixing on hydrological structure in East China Sea during typhoon Mstsa (in Chinese). Master Dissertation. Qingdao: The First Institute of Oceanpgraphy, State Oceanic AdministrationGoogle Scholar
  34. Wang N, Zhang H Q, Wang H Z, Gao D Z. 2010. Fluctuation of acoustic modal amplitude and depth dependence due to internal waves and tide (in Chinese). Acta Acoust, 35: 38–44Google Scholar
  35. Wang X H, Peng Z H, Li Z L. 2007. Effects of wave fluctuation on sound propagation (in Chinese). Tech Acoust, 26: 551–556Google Scholar
  36. Warren J D, Stanton T K, Wiebe P H, Seim H E. 2003. Inference of biological and physical parameters in an internal wave using multiple- frequency, acoustic-scattering data. Ices J Mar Sci, 60: 1033–1046CrossRefGoogle Scholar
  37. Wei R C, Chen Y C. 2002. Ambient noise level on vertical array in ASIAEX South China Sea experiment. J Acoust Soc Am, 112: 2450CrossRefGoogle Scholar
  38. Wei R C, Chan H C, Lin P C. 2004. Analysis on vertical directivity of shallow-water ambient noise in South China Sea. J Acoust Soc Am, 115: 2508Google Scholar
  39. Yamoaka H, Kaneko A, Park J, Zheng H, Gohda N, Takano T, Zhu X, Takasugi Y. 2002. Coastal acoustic tomography system and its field application. IEEE J Ocean Eng, 27: 283–295CrossRefGoogle Scholar
  40. Ying M, Zhang W, Yu H, Lu X, Feng J, Fan Y, Zhu Y, Chen D. 2014. An overview of the China Meteorological Administration tropical cyclone database. J Atmos Ocean Technol, 31: 287–301CrossRefGoogle Scholar
  41. Zheng Q A, Wu L Y, Zhang D, Li X F. 1989. A study on SLAR image signatures of internal waves in the sea area nearby the Laoshan bay (in Chinese). Oceanol Limnol Sin, 20: 281–287Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • GuangBing Yang
    • 1
    • 2
    • 3
    Email author
  • LianGang Lü
    • 3
  • YeLi Yuan
    • 3
  • Ying Jiang
    • 3
  • ZongWei Liu
    • 3
  • ChunMei Yang
    • 3
  • HongNing Liu
    • 3
  • Zhao Chen
    • 3
  1. 1.South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Marine Science and Numerical Modeling, The First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations