Science China Earth Sciences

, Volume 58, Issue 9, pp 1623–1632 | Cite as

Upper ocean response to tropical cyclone wind forcing: A case study of typhoon Rammasun (2008)

Research Paper

Abstract

The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were investigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6–13, 2008. It is found that the local response right under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.

Keywords

tropical cyclone wind forcing upper ocean response satellite and Argo data ocean modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas R, Hoffman R N, Ardizzone J, Leidner S M, Jusem J C, Smith D K, Gombos D. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Amer Meteorol Soc, 92: 157–174CrossRefGoogle Scholar
  2. Chen D, Rothstein L M, Busalacchi A J. 1994. A hybrid vertical mixing scheme and its application to tropical ocean models. J Phys Oceanogr, 24: 2156–2179CrossRefGoogle Scholar
  3. Chen G, Tam C Y. 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett, 37: L01803, doi: 10.1029/2009GL041708Google Scholar
  4. Chu J H, Sampson C R, Levine A S, et al. 2002. The Joint Typhoon Warning Center tropical cyclone best tracks, 1945-2000. Naval Research Laboratory Technical Report. NRL/MR/7540-02-16, 112Google Scholar
  5. Emanuel K A. 1987. The dependence of hurricane intensity on climate. Nature, 326: 483–485CrossRefGoogle Scholar
  6. Emanuel K A. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. J Geophys Res, 106: 14771–14781CrossRefGoogle Scholar
  7. Fedorov A V, Brierley C M, Emanuel K A. 2010. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463: 1066–1070CrossRefGoogle Scholar
  8. Gent P R, Cane M A. 1989. A reduced gravity, primitive equation model of the upper equatorial ocean. J Comp Phys, 81: 444–480CrossRefGoogle Scholar
  9. Ginis I. 2002. Tropical cyclone-ocean interactions. In: Perrie W, ed. Atmosphere–Ocean Interactions. Boston: WIT Press. 83–114Google Scholar
  10. Hackert E C, Busalacchi A J, Murtugudde R. 2001. A wind comparison study using an ocean general circulation model for the 1997–1998 El Niño. J Geophys Res, 106: 2345–2362CrossRefGoogle Scholar
  11. Henderson-sellers A, Zhang H, Berz G, Emanuel K, Gray W, Landsea C, Holland G, Lighthill J, Shieh S L, Webster P, and Mcguffie K. 1998. Tropical cyclones and global climate change: A post-IPCC assessment. Bull Amer Meteorol Soc, 79: 19–38CrossRefGoogle Scholar
  12. Hu A, Meehl G A. 2009. Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys Res Lett, 36: L03702, doi: 10.1029/2008GL036680CrossRefGoogle Scholar
  13. Huang P, Sanford T B, Imberger J. 2009. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J Geophys Res, 114: C12023, doi: 10.1029/2009JC005603CrossRefGoogle Scholar
  14. Jacob S D, Shay L K, Mariano A J, Black P G. 2000. The 3D oceanic mixed layer response to hurricane Gilbert. J Phys Oceanogr, 30: 1407–1429CrossRefGoogle Scholar
  15. Jansen M, Ferrari R. 2009. Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys Res Lett, 36: L06604, doi: 10.1029/2008GL036796CrossRefGoogle Scholar
  16. Kim H M, Webster P J, Curry J A. 2011. Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J Clim, 24: 1839–1849CrossRefGoogle Scholar
  17. Korty R L, Emanuel K A, Scott J R. 2008. Tropical cyclone-induced upper- ocean mixing and climate: Application to equable climates. J Clim, 21: 638–654CrossRefGoogle Scholar
  18. Levitus S, Antonov J, Boyer T. 2005. Warming of the world ocean, 1955-2003. Geophys Res Lett, 32: L02604, doi: 10.1029/ 2004GL021592Google Scholar
  19. Lin I I, Liu W T, Wu C C, Chiang J C H, Sui C H. 2003. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys Res Lett, 30: 1131. doi: 10.1029/2002GL015674CrossRefGoogle Scholar
  20. Murtugudde R, Beauchamp J, McClain C R, Lewis M, Busalacchi A J. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. J Clim, 15: 470–486CrossRefGoogle Scholar
  21. Murtugudde R, Busalacchi A J. 1998. Salinity effects in a tropical ocean model. J Geophys Res, 103: 3283–3300CrossRefGoogle Scholar
  22. Murtugudde R, Seager R, Busalacchi A. 1996. Simulation of tropical oceans with an ocean GCM coupled to an atmospheric mixed layer model. J Clim, 9: 1795–1815CrossRefGoogle Scholar
  23. O’Neill L W, Chelton D B, Esbensen S K. 2010. The effects of SSTinduced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J Clim, 23: 255–281CrossRefGoogle Scholar
  24. Pasquero C, Emanuel K. 2008. Tropical cyclones and transient upper ocean warming. J Clim, 21: 149–162CrossRefGoogle Scholar
  25. Price J F. 1981. Upper ocean response to a hurricane. J Phys Oceanogr, 11: 153–175CrossRefGoogle Scholar
  26. Price J F, Morzel J, Niiler P P. 2008. Warming of SST in the cool wake of a moving hurricane. J Geophys Res, 113: C07010, doi: 10.1029/ 2007JC004393Google Scholar
  27. Seager R, Blumenthal M B, Kushnir Y. 1995. An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes. J Clim, 8: 1951–1964CrossRefGoogle Scholar
  28. Sriver R L, Goes M, Mann M E, Keller K. 2010. Climate response to tropical cyclone-induced ocean mixing in an Earth system model of intermediate complexity. J Geophys Res, 115: C10042, doi: 10.1029/ 2010JC006106CrossRefGoogle Scholar
  29. Sriver R L, Huber M. 2007. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447: 557–580CrossRefGoogle Scholar
  30. Sriver R L, Huber M. 2010. Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys Res Lett, 37: L08704, doi: 10.1029/ 2010GL042836CrossRefGoogle Scholar
  31. Vincent E M, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain N C, Menkes C E, Jullien S. 2012. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J Geophys Res, 117: C02020, doi: 10.1029/2011JC007396Google Scholar
  32. Webster P J, Holland G T, Curry J A, Chang H R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309: 1844–1846CrossRefGoogle Scholar
  33. Wu Q, Chen D. 2012. Typhoon-induced variability of the oceanic surface mixed layer observed by Argo floats in the western north Pacific ocean. Atmos Ocean, 50 (supl): 4–14Google Scholar
  34. Xie P, Arkin P A. 1995. An intercomparison of gauge observations and satellite estimates of monthly precipitation. J Appl Meteorol, 34: 1143–1160CrossRefGoogle Scholar
  35. Zedler S E. 2009. Simulations of the ocean response to a hurricane: Nonlinear processes. J Phys Oceanogr, 39: 2618–2634CrossRefGoogle Scholar
  36. Zhang R H, Pei Y, Chen D. 2013. Remote effects of tropical cyclone wind forcing over the western Pacific on the eastern equatorial ocean. Adv Atmos Sci, 30: 1507–1525CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Physical and Environmental OceanographyOcean University of ChinaQingdaoChina
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  3. 3.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations