Science China Earth Sciences

, Volume 58, Issue 3, pp 474–481 | Cite as

Feasibility study on application of satellite formations for eliminating the influence from aliasing error of ocean tide model

  • Qian Zhao
  • WeiPing Jiang
  • XinYu Xu
  • XianCai Zou
Research Paper


Currently, aliasing error of temporal signal model becomes the main factor constraining the accuracy of temporal gravity field. In provision of three types of satellite formations, i.e., GRACE-type, Pendulum-type and n-s-Cartwheel-type, which are suitable for gravity mission and composed of observation in different directions, here we design two cases and conduct a simulation experiment on the feasibility to apply satellite formations for eliminating the influence from the aliasing error of ocean tide models. The result of our experiment shows that, when the aliasing error is disregarded, n-s-Cartwheel formation can provide the best conditions for gravity field determination, which, compared with GRACE-type, can improve the accuracy by 43%. When aliasing error of the ocean tide model acts as the main source of error, the satellite formation applied in dynamic method for gravity field inversion cannot eliminate aliasing or improve the accuracy of gravity field. And due to its higher sensitivity to the high-degree variation of gravity field, the Cartwheel-type formation, which includes the radial observation, can result in the gravity field containing more high-frequency signals for the ocean tide model error, and lead to a dramatically larger error.


satellite formation aliasing error ocean tide model gravity field inversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen J L, Wilson C R, Swo K W. 2006. Optimized smoothing of gravity recovery and climate experiment(GRACE) time-variable gravity observations. J Geophys Res, 111: B06408Google Scholar
  2. Ditmar P, Teixeira da encarnacao J, Hashemi Farahani H. 2011. Under-standing data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geod, 86: 441–465CrossRefGoogle Scholar
  3. Elsaka B. 2010. Simulated satellite formation flights for detecting temporal variations of the earth’s gravity field. Doctoral Dissertation. Bonn: University of Bonn, GermaryGoogle Scholar
  4. Han S C, Jekeli C, Shum C K. 2004. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res, 109: B04403Google Scholar
  5. Jekeli C. 1996. spherical harmonic analysis aliasing and filtering. J Geod, 70: 214–223CrossRefGoogle Scholar
  6. Kim J. 2000. Simulation study of a low-low satellite-to-satellite tracking mission. Doctoral Dissertation. Austin: University of Texas at AustinGoogle Scholar
  7. Klees R, Revtova E A, Gunter B C, et al. 2008. The design of an optimal filter for monthly GRACE gravity models. Geophys J Int, 175: 417–432CrossRefGoogle Scholar
  8. Kurtenbach E, Mayer-Gurr T, Eicker A. 2009. Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett, doi:10.1029/2009GL039564Google Scholar
  9. Loomis B D, Nerem R S, Luthcke S B. 2012. Simulation study of a follow-on gravity mission to GRACE. J Geod, 86: 319–335CrossRefGoogle Scholar
  10. Luo Z C, Li Q, Zhang K, et al. 2012. Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field. Sci China Earth Sci, 55: 76–82CrossRefGoogle Scholar
  11. Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn, 56: 394–415CrossRefGoogle Scholar
  12. Ray R D, Luthcke S B. 2006. Tide model errors and GRACE gravimetry: Towards a more realistic assessment. Geophys J Int, 167: 1055–1059CrossRefGoogle Scholar
  13. Savcenko R, Bosch W. 2008. EOT08a-empirical ocean tide model from multi-mission satellite altimetry. Report No.81. Deutsches Geodatisches Forschungsinstitut (DGFI), Munchen, GermanyGoogle Scholar
  14. Seo K W, Wilson C R, Han S C, et al. 2008a. Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides. J Geophys Res, 113: B03405Google Scholar
  15. Seo K W, Wilson C R, Chen J L, et al. 2008b. GRACE’s spatial aliasing error. Geophys J Int, 172: 41–48CrossRefGoogle Scholar
  16. Sneeuw N, Flury J, Rummel R. 2005. Science requirements on future missions and simulated mission scenarios. Earth Moon Planet, 94: 113–142CrossRefGoogle Scholar
  17. Tapley B D, Bettadpur S, Ries J C, et al. 2004. GRACE measurements of mass variability in the Earth system. Science, 305: 503–505CrossRefGoogle Scholar
  18. Visser P, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides: Aliasing effects. Geophys J Int, 181: 789–805Google Scholar
  19. Wahr J, Molenaar M, Bryan F. 1998. Time variablility of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 103: 30205–30229CrossRefGoogle Scholar
  20. Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE: First results. Geophys Res Lett, 31: L11501CrossRefGoogle Scholar
  21. Watkins M, Sprague G, Case K, et al. 2008. Time Variable Gravity Mapping Mission (Grace Follow-On/Grace II) Study. GRACE Science Team Meeting. 237–250Google Scholar
  22. Wiese D N, Folkner W M, Nerem R S. 2009. Alternative mission architectures for a gravity recovery satellite mission. J Geod, 83: 569–581CrossRefGoogle Scholar
  23. Wiese D N, Visser P, Nerem R S. 2011. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv Space Res, 48: 1094–1107CrossRefGoogle Scholar
  24. Zenner L, Gruber T, Jäggi A, et al. 2010. Propogation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys J Int, 182: 797–807CrossRefGoogle Scholar
  25. Zhao Q, Jiang W P, Xu X Y, et al. 2011. Analysis of influence of aliasing effects on GRACE gravity solution. J Geod Geodyn, 31: 123–126Google Scholar
  26. Zhao Q. 2012. Methodology research and simulation analysis of the Earth’s gravity field determination using satellite formation. Doctoral Dissertation. Wuhan: Wuhan University, ChinaGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qian Zhao
    • 1
    • 2
  • WeiPing Jiang
    • 2
  • XinYu Xu
    • 3
  • XianCai Zou
    • 3
  1. 1.Institute of Earthquake ScienceChina Earthquake AdministrationBeijingChina
  2. 2.GNSS Research CenterWuhan UniversityWuhanChina
  3. 3.School of Geodesy and GeomaticsWuhan UniversityWuhanChina

Personalised recommendations