Advertisement

Science China Earth Sciences

, Volume 58, Issue 1, pp 106–115 | Cite as

The POM-DOM piezophilic microorganism continuum (PDPMC)—The role of piezophilic microorganisms in the global ocean carbon cycle

  • JiaSong Fang
  • Li Zhang
  • JiangTao Li
  • Chiaki Kato
  • Christian Tamburini
  • YuZhong Zhang
  • HongYue Dang
  • GuangYi Wang
  • FengPing Wang
Research Paper

Abstract

The deep ocean piezosphere accounts for a significant part of the global ocean, hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle. The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean. However, there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production, transformation, degradation, and export of marine dissolved and particulate organic matter (DOM and POM) in the deep ocean and the ecological consequence. Here we propose the POM-DOM piezophilic microorganism continuum (PDPMC) conceptual model, to address these important biogeochemical processes in the deep ocean. We propose that piezophilic microorganisms (bacteria and archaea) play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes, enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter, and serve as the primary driver for carbon cycle in the deep ocean.

Keywords

carbon cycle deep ocean DOM PDPMC piezophilic microorganisms POM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alain K, Marteinsson V T, Miroshnichenko M L, et al. 2002. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol, 52: 1331–1339Google Scholar
  2. Alazard D, Dukan S, Urios A, et al. 2003. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol, 53: 173–178Google Scholar
  3. Alldredge A, Gottschalk C C. 1990. The relative contribution of marine snow of different origins to biological processes in coastal waters. Cont Shelf Res, 10: 41–58Google Scholar
  4. Alldredge A L. 2000. Interstitial dissolved organic carbon (DOC) concentrations within sinking marine aggregates and their potential contribution to carbon flux. Limnol Oceanogr, 45: 1245–1253Google Scholar
  5. Amstalden van Hove E R, Smith D F, Heeren R M A. 2010. A concise review of mass spectrometry imaging. J Chromatogr A, 1217: 3946–3954Google Scholar
  6. Anderson T R, Williams P J le B. 1999. A one-dimensional model of dissolved organic carbon cycling in the water column incorporating combined biological-photochemical decomposition. Glob Biogeochem Cycle, 13: 337–349Google Scholar
  7. Arístegui J, Gasol J M, Duarte C M, et al. 2009. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr, 54: 1501–1529Google Scholar
  8. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev MarSci, 3: 401–425Google Scholar
  9. Azam F, Ammerman J W. 1984. Cycling of organic matter by bacterioplankton in pelagic marine ecosystems, microenvironmental considerations. In: Fasham M J R, ed. Flows of Energy and Materials in Marine Ecosystems. New York: Plenum Press. 345–360Google Scholar
  10. Azam F, Fenchel T, Field J G, et al. 1983. The ecologicalrole of water-column microbes in the sea. Mar Ecol-Prog Ser, 10: 257–263Google Scholar
  11. Azam F, Long R A. 2001. Atmospheric CO2 changes. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union. 99–110Google Scholar
  12. Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat Rev Microbiol, 5: 782–791Google Scholar
  13. Azam F. 1998. Microbial control of oceanic carbon flux: The plot thickens. Science, 280: 694–696Google Scholar
  14. Bale S J, Goodman K, Rochelle P A, et al. 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol, 47: 515–521Google Scholar
  15. Bartlett D H. 2008. Introduction to deep-sea microbiology. In: Michiels C, Bartlett D H, Aertsen A, eds. High-Pressure Microbiology. Washington DC: American Society for Microbiology. 195–202Google Scholar
  16. Beaupre S, Druffel E. 2009. Constraining the propagation of bomb-radiocarbon through dissolved organic carbon pool in the northeast Pacific Ocean. Deep-Sea Res I, 56: 1717–1726Google Scholar
  17. Benner R. 2002. Chemical composition and reactivity. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 59–90Google Scholar
  18. Bianchi A, Van Wambeke F, Garcin J. 1998. Bacterial utilization of glucose in the water column from etrophic to oligotrophicpelaglc areas in the eastern North Atlantic Ocean. J Mar Syst, 14: 45–55Google Scholar
  19. Boxer S G, Kraft M L, Weber P K. 2009. Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys, 38: 53–74Google Scholar
  20. Brown M V, Philip G K, Bunge J A, et al. 2009. Microbial community structure in the North Pacific Ocean. ISME J, 3: 1374–1386.Google Scholar
  21. Carlson C A, Ducklow H W, Michaels A F. 1994. Annualflux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371: 405–408Google Scholar
  22. Caron D A, Dam H G, Kremer P. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea and near Bermuda. Deep-Sea Res Part I-Oceanogr Res Pap, 42: 943–972Google Scholar
  23. Chrost R J. 1991. Environmental control of synthesis and activity of aquatic microbial ectoenzymes. In: Chrost R J, ed. Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag. 29–59Google Scholar
  24. D’Andrilli J, Dittmar T, Koch B P, et al. 2010. Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization. Rapid Commun Mass Spec, 24: 643–650Google Scholar
  25. del Giorgio P A, Prairie Y T, Bird D F. 1997. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, counted using CTC reduction and flow cytometry. Microb Ecol, 34: 144–154Google Scholar
  26. DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci U S A, 89: 5685–5689Google Scholar
  27. DeLong E F, Franks D G, Yayanos A A. 1997. Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol, 63: 2105–2108Google Scholar
  28. DeLong E F, Preston C M, Mincer T, et al. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311: 496–503Google Scholar
  29. Druffel E R M, Williams P M, Bauer J E, et al. 1992. Cycling of dissolved and particulate organic matter in the open ocean. J Geophys Res, 97: 15639–15659Google Scholar
  30. Ducklow H W, Carlson C A. 1992. Oceanicbacterial production. In: Marshall K C, ed. Advances in Microbial Ecology, Volume 12. New York: Plenum Press. 113–181Google Scholar
  31. Ducklow H W. 2000. Bacterial production and biomass in the oceans. In: Kirchman D L, ed. Microbial Ecology of the Oceans. Hoboken, N J: Wiley-Liss. 85–120Google Scholar
  32. Erauso G, Prieur D, Godfroy A, et al. 1993. Platecultivation technique for strictly anaerobic, thermophilic, sulphurmetabolizing Archaea. In: Robb A T, ed. Archaea: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 25–29Google Scholar
  33. Fang J, Kato C. 2008. Deep-sea piezophilic bacteria, ocean carbon cycle, and climate change. In: Philander S G, ed. The Encyclopedia of Global Warming and Climate Change. London: Golson Books, Ltd. 557–558Google Scholar
  34. Fang J, Li J, Dasgupta S, et al. 2012. PDPBC, a model illustrating the role of piezophilic bacteria in deep-sea carbon cycle. The 2nd International Conference on Earth System Sciences, Tongji University, Shanghai, China.Google Scholar
  35. Fang J, Zhang L, Bazylinski D A. 2010. The deep-sea piezosphere and piezophiles: Geomicrobiology and biogeochemistry. Trends Microbiol, 18: 413–422Google Scholar
  36. Fang J, Bazylinski D A. 2008. Deep-sea geomicrobiology and biogeochemistry. In: Michiels C, Bartlett D H, Aertsen A, eds. High-Pressure Microbiology. Washington, DC: American Society for Microbiology. 237–264Google Scholar
  37. Flerus R, Lechtenfeld O J, Koch B P, et al. 2012. A molecular perspective on the aging of marine dissolved organic matter. Biogeosciences, 9: 1935–1955Google Scholar
  38. Fuhrman J A, McCallum K, Davis A A. 1992. Novel major archaebacterial group from marine plankton. Nature, 356: 148–149Google Scholar
  39. Gardes A, Iversen M H, Grossart H P, et al. 2011. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J, 5: 436–445Google Scholar
  40. Glud R N, Wenzhöfer F, Middelboe M, et al. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci, 6: 284–288Google Scholar
  41. Grossart H P, Tang K W, Kiørboe T, et al. 2007. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol Lett, 266: 194–200Google Scholar
  42. Gruber N, Friedlingstein P, Field C B, et al. 2004. The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. In: Field C B, Raupach M R, eds. The Global Carbon Cycle: Integrating Humans, Climate and the Natural World. Washington DC: Island Press. 1–76Google Scholar
  43. Hansell D A, Carlson C A, Repeta D J, et al. 2009. Dissolved organic matter in the ocean: Acontroversy stimulates new insights. Oceanogr aphy, 22: 52–61Google Scholar
  44. Hansell D A, Carlson C A. 1998. Deep oceangradients in dissolved organic carbon concentrations. Nature, 395: 263–266Google Scholar
  45. Hansell D A, Carlson C A. 2001. Marine dissolved organic matter and the carboncycle. Oceanography Special Issue JGOFS, 14: 41–49Google Scholar
  46. Hansell D A. 2002. DOC in the Global Ocean Carbon Cycle. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 685–716Google Scholar
  47. Hedges J I. 1992. Global biogeochemical cycles: Progressand problems. Mar Chem, 39: 67–93Google Scholar
  48. Hedges J I. 2002. Why dissolved organics matter. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 1–33Google Scholar
  49. Hedges J I, Eglinton G, Hatcher P G, et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem, 31: 945–958Google Scholar
  50. Hermann A M, Ritz K, Nunan N, et al. 2007. Nano-scale secondary ion mass spectrometry—A new analytical tool in biogeochemistry and soil ecology. Soil Biol Biochem, 39: 1835–1850Google Scholar
  51. Herndl G J, Reinthaler T, Teira E, et al. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 71: 2303–2309Google Scholar
  52. Hewson I, Steele J A, Capone D G, et al. 2006. Remarkable heterogeneity in meso-to bathypelagic bacterioplanktona ssemblage composition. Limnol Oceanogr, 51: 1274–1283Google Scholar
  53. Hopkinson C, Vallino J J, Nolin A. 2002. Decomposition of dissolved organic matter from thecontinental margin. Deep-Sea Res Part II—Top Stud Oceanogr, 49: 4461–4478Google Scholar
  54. Hopkinson Jr C S, Fry B, Nolin A L. 1997. Stoichiometry of dissolved organic matter dynamicson the continental shelf of the northeastern USA. Cont Shelf Res, 17: 473–489Google Scholar
  55. Jannasch H W, Taylor C D. 1984. Deep-sea microbiology. Annu Rev Microbiol, 38: 487–514Google Scholar
  56. Jannasch H W, Wirsen C O. 1973. Deep-sea microorganisms: In situ response to nutrient enrichment. Science, 180: 641–643Google Scholar
  57. Jiao N Z, Herndl G J, Hansell D A, et al. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Rev Microbiol, 8: 593–599Google Scholar
  58. Jorgensen B B. 2009. Bacteria and Marine Biogeochemistry. In: Horst D S, Matthias Z, eds. Marine Geochemistry. Berlin Heidelberg: Springer. 169–206Google Scholar
  59. Karner M B, DeLong E F, Karl D M, 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507–510Google Scholar
  60. Kato C, Li L, Nakamura Y, et al. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11000 meters. Appl Environ Microbiol, 64: 1510–1513Google Scholar
  61. Kato C, Sato T, Horikoshi K. 1995. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv, 4: 1–9Google Scholar
  62. Kato C, Nogi Y, Arakawa S. 2008. Isolation, cultivation, and diversity of deep-seapiezophiles. In: Michiels C, Bartlett D H, Aertsen A, eds. High-Pressure Microbiology. Washington DC: American Society for Microbiology. 203–217Google Scholar
  63. Khelaifia S, Fardeau M L, Pradel N, et al. 2011. Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol, 61: 2706–2711Google Scholar
  64. Kim S, Kramer R W, Hatcher P G. 2003. Graphical method for analysis of ultrahigh-resolution broadband mass spectrometra of natural organic matter, the van Krevelen diagram. Anal Chem, 75: 5336–5344Google Scholar
  65. Kirchman D L, Elifantz H, Dittel A I, et al. 2007. Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol Oceanogr, 52: 495–507Google Scholar
  66. Kirchman D L, Keil R G, Simon M, et al. 1993. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res Part I-Oceanogr Res Pap, 40: 967–988Google Scholar
  67. Koch B P, Witt M, Engbrodt R, et al. 2005. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta, 69: 3299–3308Google Scholar
  68. Lauro F, Bartlett D. 2007. Prokaryotic lifestyles in deep sea habitats. Extremophiles, 12: 15–25Google Scholar
  69. Lefevre D, Denis M, Lambert C E, et al. 1996. Is DOC the main source of organic matter remineralization in the ocean water column? J Mar Syst, 7: 281–291Google Scholar
  70. Loh A N, Bauer J E, Druffel E R M. 2004. Variable aging and storage of dissolved organic components in the open ocean. Nature, 430: 877–880Google Scholar
  71. Marteinsson V T, Birrien J T, Reysenbach A L, et al. 1999. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol, 49: 351–359Google Scholar
  72. Martin J H, Knauer G A, Karl DM, et al. 1987. VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap, 34: 267–285Google Scholar
  73. Martin-Cuadrado A B, Lopez-Garcia P, Alba J C, et al. 2007. Metagenomics of the deep Mediterranean, a warm Bathypelagic habitat. PLoS ONE, 2: e914Google Scholar
  74. Mopper K, Stubbins A, Ritchie J D, et al. 2007. Advanced instrumental approaches for characterization of marine dissolved organic matter: Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem Rev, 107: 419–442Google Scholar
  75. Nagata T. 2000. Production mechanisms of dissolved organic matter. In: Kirchman D L, ed. Microbial Ecology of the Oceans. Hoboken NJ: John Wiley. 121–152Google Scholar
  76. Offre P, Spang A, Schleper C. 2013. Archaea in biogeochemical cycles. Annu Rev Microbiol, 67: 437–457Google Scholar
  77. Ogawa H, Amagai Y, Koike I, et al. 2001. Production of refractory dissolvedorganic matter by bacteria. Science, 292: 917–920Google Scholar
  78. Ogawa H, Fukuda R, Koike I.1999. Vertical distribution of dissolved organic carbon and nitrogen in the Southern Ocean. Deep-Sea Res Part I-Oceanogr Res Pap, 46: 1809–1826Google Scholar
  79. Ploug H, Iversen M H, Fischer G. 2008. Ballast, sinking velocity, and apparent diffusivity within marine snow and fecal pellets: Implications for substrate turnover by attached bacteria. Limnol Oceanogr, 53: 1878–1886Google Scholar
  80. Pradel N, Ji B, Gimenez G, et al. 2013. The first genomic and proteomic characterization of a deep-sea sulfate reducer: Insights into the piezophilic lifestyle of Desulfovibriopiezophilus. PLoS ONE, 8: e55130Google Scholar
  81. Sato C, Kuroki Y Y, Gang C, et al. 2009. Characteristic distribution and structure of pranktonic archaea in the Arctic Ocean. American Geophysical Union Fall Meeting, San Francisco, CA, USA, December, 2009Google Scholar
  82. Schippers A, Neretin L N, Kallmeyer J, et al. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 433: 861–864Google Scholar
  83. Siegl A, Kamke J, Hochmuth T, et al. 2011. Single-cell genomics reveals the life style of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J, 5: 61–70Google Scholar
  84. Simon M, Grossart H P, Schweizer B, et al. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol, 28: 175–211Google Scholar
  85. Smith D C, Simon M, Alldredge A L, et al. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359:139–142Google Scholar
  86. Sogin M L, Morrison H G, Huber J A, et al. 2006. Microbial diversity in the deep sea and the under-explored “rarebiosphere”. Proc Natl Acad Sci USA, 103: 12115–12120Google Scholar
  87. Tamburini C, Boutrif M, Garel M, et al. 2013. Prokaryotic responses to hydrostatic pressure in the ocean—A review. Environ Microbiol, 15: 1262–1274Google Scholar
  88. Tamburini C, Garcin J, Bianchi A. 2003. Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat Microb Ecol, 32: 209–218Google Scholar
  89. Tamburini C, Garcin J, Grégori G, et al. 2006. Pressure effects on surface Mediterranean prokaryotes and biogenic silica dissolution during adiatom sinking experiment. Aquat Microb Ecol, 43: 267–276Google Scholar
  90. Tamburini C, Garcin J, Ragot M, et al. 2002. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 2109–2123Google Scholar
  91. Tamburini C, Garel M, Alali B, et al. 2009. Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea. Deep-Sea Res Part II—Top Stud Oceanogr, 56: 700–712Google Scholar
  92. Tamburini C. 2006. Life under pressure, deep-sea microbial ecology. In: Seckbach J, ed. Life as We Know It Series: Cellular Origin and Life in Extreme Habitats and Astrobiology, Jerusalem. Berlin-Heidelberg: Springer. 1–17Google Scholar
  93. Verdugo P, Alldredge A L, Azam F, et al. 2004. The oceanic gel phase: A bridge in the DOM-POM continuum. Mar Chem, 92: 67–85Google Scholar
  94. Vezzi A, Campanaro S, D’Angelo M, et al. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science, 307: 1459–1461Google Scholar
  95. Volk T, Hoffert M I. 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union. 99–110Google Scholar
  96. Volkman J K, Tanoue E. 2002. Chemical and biological studies of particulate organic matter in the ocean. J Oceanogr, 58: 265–279Google Scholar
  97. von Mering C, Hugenholtz P, Raes J, et al. 2007. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science, 315: 1126–1130Google Scholar
  98. Weiss M S, Abele J, Weckesser W, et al. 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science, 254: 1627–1630Google Scholar
  99. Williams P J. 1998. The balance of plankton respiration and photosynthesis in the open oceans. Nature, 394: 55–57Google Scholar
  100. Yayanos A A. 1998. Empirical and theoretical aspects of life at high pressure in the deep sea. In: Horikoshi K, Grant W D, eds. Extremophiles, Microbial Life in Extreme Environments. New York: John Wiley and Sons. 47–92Google Scholar
  101. Zeng X, Birrien J L, Fouquet Y, et al. 2009. Pyrococcus CH1, an obligate piezophilic hyperthermophile: Extending the upper pressure-temperature limits for life. ISME J, 3: 873–876Google Scholar
  102. Ziervogel K, Arnosti C. 2008. Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate-free seawater from the northeastern Gulf of Mexico. Environ Microbiol, 10: 289–299Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • JiaSong Fang
    • 1
    • 2
  • Li Zhang
    • 3
  • JiangTao Li
    • 1
  • Chiaki Kato
    • 4
  • Christian Tamburini
    • 5
  • YuZhong Zhang
    • 6
  • HongYue Dang
    • 7
  • GuangYi Wang
    • 8
  • FengPing Wang
    • 9
  1. 1.State Key Laboratory of Marine Geology, School of Ocean and Earth ScienceTongji UniversityShanghaiChina
  2. 2.Department of Natural SciencesHawaii Pacific UniversityKaneoheUSA
  3. 3.State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth SciencesChina University of GeosciencesWuhanChina
  4. 4.Institute of Biogeoscience Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  5. 5.Aix Marseille Université, CNRSUniversité de Toulon, IRD, MIO UM 110MarseilleFrance
  6. 6.State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina
  7. 7.State Key Laboratory of Marine Environmental Sciences Institute of Marine Microbes and EcospheresXiamen UniversityXiamenChina
  8. 8.Center for Marine Ecology and Environmental ResearchTianjin UniversityTianjinChina
  9. 9.State Key Laboratory of Microbial Metabolism and State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations