Advertisement

Science China Earth Sciences

, Volume 58, Issue 2, pp 195–210 | Cite as

A case study of the role of climate, humans, and ecological setting in Holocene fire history of northwestern Europe

  • QiaoYu Cui
  • Marie-José Gaillard
  • Fredrik Olsson
  • Annica Greisman
  • Geoffrey Lemdahl
  • Ganna Zernova
Research Paper

Abstract

We present the major results from studies of fire history over the last 11000 years (Holocene) in southern Sweden, on the basis of palaeoecological analyses of peat sequences from three small peat bogs. The main objective is to emphasize the value of multiple, continuous sedimentary records of macroscopic charcoal (macro-C) for the reconstruction of local to regional past changes in fire regimes, the importance of multi-proxy studies, and the advantage of model-based estimates of plant cover from pollen data to assess the role of tree composition and human impact in fire history. The chronologies at the three study sites are based on a large number of 14C dates from terrestrial plant remains and age-depth models are achieved using Bayesian statistics. Fire history is inferred from continuous records of macro-C and microscopic charcoal counts on pollen slides. The Landscape Reconstruction Algorithm (LRA) for pollen-based quantitative reconstruction of local vegetation cover is applied on the three pollen records for plant cover reconstruction over the entire Holocene. The results are as follows: (1) the long-term trends in fire regimes are similar between sites, i.e., frequent fires during the early Holocene until ca. 9 ka BP, low fire frequency during the mid-Holocene, and higher fire frequency from ca. 2.5 ka BP; (2) this broad trend agrees with the overall fire history of northwestern and western Europe north of the Mediterranean area, and is due to climate forcing in the early and mid-Holocene, and to anthropogenic land-use in the late Holocene; (3) the LRA estimates of plant cover at the three sites demonstrate that the relative abundance of pine played a primordial role in the early and mid-Holocene fire history; and (4) the between-site differences in the charcoal records and inferred fire history are due to local factors (i.e., relative abundance of pine, geomorphological setting, and anthropogenic land-use) and taphonomy of charcoal deposition in the small peat bogs. It is shown that continuous macro-C records are most useful to disentangle local from regional-subcontinental fire history, and climate-induced from human-induced fire regimes, and that pollen-based LRA estimates of local plant cover are more adequate than pollen percentages for the assessment of the role of plant composition on fire history.

Keywords

fire history land-use history charcoal analysis Landscape Reconstruction Algorithm (LRA) Holocene Småland Sweden 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahti T, Hämet-Ahti L, Jalas J. 1968. Vegetation zones and their sections in north-western Europe. Annal Botan Fenn, 5: 169–211Google Scholar
  2. Almqvist-Jacobson H. 1994. Interaction of the Holocene climate, water balance, vegetation, fire, and the cultural land-use in Swedish borderland. Lundqua Thesis 30. Sweden: Lund UniversityGoogle Scholar
  3. Almqvist-Jacobson H. 1995. Lake-level fluctuations at Ljustjärnen, central Sweden and their implications for the Holocene climate of Scandinavia. Palaeogeogr Palaeocl, 118: 269–290CrossRefGoogle Scholar
  4. Berglund B E. 1991. The cultural landscape during 6000 years in southern Sweden: The Ystad project. Ecol Bull, 41: 1–495Google Scholar
  5. Berglund B E, Ralska-Jasiewiczowa M. 1986. Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester: WileyGoogle Scholar
  6. Berglund B E, Lagerås P, Regnéll J. 2002. Odlingslandskapets historia I Sydsverige-en pollenanalytisk syntes. In: Berglund B E, Börjesson K, eds. Markens minnen: landskap och odlingshistoria på småländska höglandet under 6000 år. Stockholm: Riksantikvarieämbetet. 153–195Google Scholar
  7. Beug H J. 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr Friedrich Pfeil: MünchenGoogle Scholar
  8. Björkman L. 1996. Long-term population dynamics of Fagus sylvatica at the northern limits of its distribution in southern Sweden: A palaeoecological study. Holocene, 6: 225–234CrossRefGoogle Scholar
  9. Björkman L, Bradshaw R H W. 1996. The immigration of Fagus sylvatica L and Picea abies (L.) Karst. into a natural forest stand in southern Sweden during the last two thousand years. J Biogeogr, 23: 235–244CrossRefGoogle Scholar
  10. Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6: 457–474CrossRefGoogle Scholar
  11. Black M P, Mooney S D. 2006. Holocene fire history from the Greater Blue Mountains World Heritage Area, New South Wales, Australia: The climate, humans and fire nexus. Reg Environ Change, 6: 41–51CrossRefGoogle Scholar
  12. Black M P, Mooney S D, Haberle S G. 2007. The fire, human and climate nexus in the Sydney Basin, eastern Australia. Holocene, 17: 469–480CrossRefGoogle Scholar
  13. Bradshaw R H W, Tolonen K, Tolonen M. 1997. Holocene records of fire from the boreal and temperate zones of Europe. In: Clark J S, Cachier H, Goldammer J G, et al, eds. Sediment Records of Biomass Burning and Global Change. Heidelberg: Springer-Verlag. 347–365CrossRefGoogle Scholar
  14. Bradshaw R H W, Hannon G, Lindbladh M. 2010. The role of fire in southern Scandinavian forests during the late Holocene. Int J Wildland Fire, 19: 1040–1049CrossRefGoogle Scholar
  15. Carcaillet C, Bergman I, Delorme S, et al. 2007. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology, 88: 465–477CrossRefGoogle Scholar
  16. Carcaillet C, Bouvier M, Frechette B, et al. 2001. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. Holocene, 11: 467–476CrossRefGoogle Scholar
  17. Carlson Å, 1996. Pollenanalytisk Studie i Ryfors Gammelskog, Västergötland. MSc thesis. Sweden: University of LundGoogle Scholar
  18. Clark J S, Lynch J, Stocks B J, et al. 1998. Relationship between charcoal particles in air and sediments in west-central Siberia. Holocene, 8: 19–29CrossRefGoogle Scholar
  19. Colombaroli D, Tinner W. 2013. Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene, 23: 1625–1634CrossRefGoogle Scholar
  20. Cui Q Y. 2013. Fire history in the hemiboreal and southern boreal zones of southern Sweden during 11000 years: Relationships with past vegetation composition and human activities and implications for biodiversity issues. Doctoral Dissertation. Växjö: Linnaeus University PressGoogle Scholar
  21. Cui Q Y, Gaillard M J, Lemdahl G, et al. 2013. The role of tree composition in Holocene fire history of the hemiboreal and southern boreal zones of southern Sweden, as revealed by the application of the Landscape Reconstruction Algorithm—Implications for biodiversity and climate-change issues. Holocene, 23: 1747–1763CrossRefGoogle Scholar
  22. Cui Q Y, Gaillard M J, Lemdahl G, et al. 2014. Historical land-use and landscape change in southern Sweden and implications for present and future biodiversity. Ecol Evol, 18: 3555–3570CrossRefGoogle Scholar
  23. Daniel E. 1994. Beskrivning av jordartskartan, Växjö SO. Sveriges geologiska undersökning, Ae 119Google Scholar
  24. Daniel E. 2001. Map of the Quaternary Deposites 5E Växjö SO, scale 1:50 000. Sveriges geologiska undersökning Ae 119Google Scholar
  25. Daniel E. 2002. Beskrivning av jordartskartan, Åseda SV. Sveriges geologiska undersökning, Ae 149Google Scholar
  26. Digerfeldt G. 1988. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden. Boreas, 17: 165–182CrossRefGoogle Scholar
  27. Fyfe R M, Twiddle C, Sugita S, et al. 2013. The Holocene vegetation cover of Britain and Ireland: Overcoming problems of scale and discerning patterns of openness. Quat Sci Rev, 73: 132–148CrossRefGoogle Scholar
  28. Gardner J J, Whitlock C. 2001. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. Holocene, 11: 541–550CrossRefGoogle Scholar
  29. Gaillard M J. 2013. Archaeological Applications. The Encyclopedia of Quaternary Science. Amsterdam: Elsevier. 880–904CrossRefGoogle Scholar
  30. Gaillard M J, Digerfeldt G. 1991. Palaeohydrological studies and their contribution to paleoecological and palaeoclimatic reconstructions. In: Berglund B E, ed. The Cultural Landscape During 6000 Years in Southern Sweden—The Ystad Project. Ecol Bull, 41: 275–282Google Scholar
  31. Gaillard M J, Berglund B E, Göransson H, et al. 1991. Chronology of the pollen diagrams from the Ystad area. In Berglund B E, ed. The Cultural Landscape During 6000 Years in Southern Sweden: The Ystad Project. Ecol Bull, 41: 489–496Google Scholar
  32. Gaillard M J, Birks H J B, Emanuelsson E, et al. 1994. Application of modern pollen/land-use relationships to the interpretation of pollen diagrams—Reconstructions of land-use history in South Sweden 3000-0 BP. Rev Palaeobot Palyno, 82: 47–73CrossRefGoogle Scholar
  33. Greisman A. 2009. The role of fire and human impact in Holocene forest and landscape dynamics of the boreo-nemoral zone of southern Sweden—A multi proxy study of two sites in the province of Småland. Doctoral Dissertation. Kalmar: Kalmar University PressGoogle Scholar
  34. Greisman A, Gaillard M J. 2009. The role of climate variability and fire in early and mid Holocene forest dynamics of southern Sweden. J Quat Sci, 24: 593–611CrossRefGoogle Scholar
  35. Grimm E C. 1990. TILIA 1.7.16: IIIinois State Museum, Springfield (available at:http://intra.museum.state.il.us/pub/grimm/tilia)Google Scholar
  36. Haberle S G, Ledru M P. 2001. Correlations among charcoal records of fires from the past 16000 years in Indonesia, Papua New Guinea, and Central and South America. Quat Res, 55: 97–104CrossRefGoogle Scholar
  37. Hammarlund D, Björck S, Buchardt B, et al. 2003. Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat Sci Rev, 22: 195–212CrossRefGoogle Scholar
  38. Hannon G E. 2002. Beech Forest History and Dynamics in Biskopstorp, Halmstads Kommun and Dömestorp, Laholms Kommun, Southern Sweden. Report for Halland County BoardGoogle Scholar
  39. Hannon G E, Gustafsson M. 2004. ‘Slottet’—The history of a hay meadow. Svensk Botanisk Tidskrift, 98: 3–4Google Scholar
  40. Hannon G E, Bradshaw R H W, Emborg J. 2000. 6000 Years of forest dynamics in Suserup Skov, a semi-natural Danish Woodland. Glob Ecol Biodiver Lett, 9: 101–114CrossRefGoogle Scholar
  41. Hannon G E, Bradshaw R H W, Nord J, et al. 2008. The Bronze Age landscape of the Bjäre peninsula, southern Sweden, and its relationship to burial mounds. J Archaeol Sci, 35: 623–632CrossRefGoogle Scholar
  42. Harrison S P, Dodson J. 1993. Climates of Australia and New Guinea since 18,000 yr BP. In: Wright H E Jr, Kutzbach J E, Webb T III, et al., eds. Global Climates since the Last Glacial Maximum. Minneapolis: University of Minnesota Press. 265–293Google Scholar
  43. Hellman S, Gaillard M J, Bröstrom A, et al. 2008a. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: Validation in southern Sweden. J Quat Sci, 23: 21–42CrossRefGoogle Scholar
  44. Hellman S, Gaillard M J, Bröstrom A, et al. 2008b. Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: A case study in southern Sweden using the REVEALS model. Veget Hist Archaeobot, 17: 445–459CrossRefGoogle Scholar
  45. Higuera P E, Brubaker L B, Anderson P M, et al. 2008. Frequent fires in ancient shrub tundra: Implications of palaeorecords for arctic environmental change. PLoS One, 3: e1744CrossRefGoogle Scholar
  46. Hultberg T. 2008. Forest continuity and human impact-vegetation history of Torup forest, south-western Scania. Examensarbete nr 107, Swedish University of Agricultural Sciences, Institutionen för Sydsvensk Skogsvetenskap, AlnarpGoogle Scholar
  47. Jansen D, Mischka D, Nelle O. 2013a. Wood usage and its influence on the environment from the Neolithic until the Iron Age: A case study of the graves at Flintbek (Schleswig-Holstein, Northern Germany). Veget Hist Archaeobot, 22: 335–349CrossRefGoogle Scholar
  48. Jansen D, Lungershausen U, Robin V, et al. 2013b. Wood charcoal from an inland dune complex at Joldelund (Northern Germany). Information on Holocene vegetation and landscape changes. Quat Int, 28: 24–35CrossRefGoogle Scholar
  49. Kasin I, Blanck Y L, Storaunet K O, et al. 2013. The charcoal record in peat and mineral soil across a boreal landscape and possible linkages to climate change and recent fire history. Holocene, 23: 1052–1065CrossRefGoogle Scholar
  50. Lagerås P. 1996. Vegetation and land-use in the Småland Uplands, southern Sweden, during the last 6000 years. Lundqua Thesis 36. Lund UniversityGoogle Scholar
  51. Lagerås P. 2000. Burial rituals inferred from palynological evidence: results from a late Neolithic stone cist in southern Sweden. Veget Hist Archaeobot, 9: 169–173CrossRefGoogle Scholar
  52. Lagerås P. 2007. The ecology of expansion and abandonment: Medieval and post-medieval agriculture and settlement in a landscape perspective. Riksantikvarieämbeter, Stockholm. 256Google Scholar
  53. Lanos, P. 2004. Bayesian inference of calibration curves, application to archaeomagnetism. In: Buck C E, Millard A R, eds. Tools for Constructing Chronologies, Crossing Disciplinary Boundaries. Series: Lecture Notes in Statistics, Vol. 177. London: Springer-Verlag. 43–82CrossRefGoogle Scholar
  54. Larsson L O, 1991. Växjö genom 1000 år. Norstedts Förlag AB, Stockholm. 586Google Scholar
  55. Lindbladh M. 1999. The influence of former land-use on vegetation and biodiversity in the boreo-nemoral zone of Sweden. Ecography 22: 485–498CrossRefGoogle Scholar
  56. Lindbladh M, Bradshaw R H W. 1995. The development and demise of a Medieval forest-meadow system at Linnaeus’ birthplace in southern Sweden: Implications for conservation and forest history. Veget Hist Archaeobot, 4: 153–160CrossRefGoogle Scholar
  57. Lindbladh M, Bradshaw R H W. 1998. The origin of present forest composition and pattern in southern Sweden. J Biogeogr, 25: 463–477CrossRefGoogle Scholar
  58. Lindbladh M, Niklasson M, Nilsson S G. 2003. Long-time record of fire and open canopy in a high biodiversity forest in southeast Sweden. Biol Conserv, 114: 231–243CrossRefGoogle Scholar
  59. Lindbladh M, Niklasson M, Karlsson M, et al. 2008. Close anthropogenic control of Fagus establishment and expansion in a Swedish protected landscape—Implications for forest history and conservation. J Biogeogr, 35: 682–697CrossRefGoogle Scholar
  60. Marlon J R, Bartlein P J, Carcaillet C, et al. 2008. Climate and human influences on global biomass burning over the past two millennia. Nat Geosci, 1: 697–702CrossRefGoogle Scholar
  61. Marlon J R, Cui Q Y, Gaillard M J, et al. 2010. Humans and fire: Consequences of anthropogenic burning during the past 2 ka. PAGES News, 18: 80–82Google Scholar
  62. Mazier F, Gaillard M J, Kunes P, et al. 2012. Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. Rev Palaeobot Palyno, 187: 38–49CrossRefGoogle Scholar
  63. Mazier F, Broström A, Bragée B, et al. 2012. Two hundred years of changing land-use in the southern Swedish Uplands: Pollen-based reconstructions using the Landscape Reconstruction Algorithm compared with historical maps. In: Fredh D, ed. The Impact of Past Land-use Change on Floristic Diversity in Southern Sweden—A Quantitative Approach Based on High-resolution Pollen Data. Lund: Lund University Press. 32–43Google Scholar
  64. Molinari C, Lehsten V, Bradshaw R H W, et al. 2013. Exploring potential drivers of European biomass burning over the Holocene: A data-model analysis. Glob Ecol Biogeogr, 22: 1248–1260CrossRefGoogle Scholar
  65. Mooney S D, Maltby E L. 2006. Two proxy records revealing the late Holocene fire history at a site on the central coast of New South Wales, Australia. Austral Ecol, 31: 682–695CrossRefGoogle Scholar
  66. Mooney S D, Radford K L, Hancock G. 2001. Clues to the ‘burning question’: Pre-European fire in the Sydney coastal region from sedimentary charcoal and palynology. Ecol Manage Rest, 2: 203–212CrossRefGoogle Scholar
  67. Moore P D, Webb J A, Collinson M E. 1991. Pollen Analysis. 2nd ed. Oxford: Blackwell ScientificGoogle Scholar
  68. Nesje A, Matthews J A, Dahl S O, et al. 2001. Holocene glacier fluctuations of Flatebreen and winter precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine records. Holocene, 11: 267–280CrossRefGoogle Scholar
  69. Nielsen A B, Odgaard B V. 2010. Quantitative landscape dynamics in Denmark through the last three millennia based on the Landscape Reconstruction Algorithm approach. Veget Hist Archaeobot, 19: 375–387CrossRefGoogle Scholar
  70. Nielsen A B, Giesecke T, Theuerkauf M, et al. 2012. Quantitative reconstructions of changes in regional openness in north-central Europe reveal new insights into old questions. Quat Sci Rev, 47: 131–149CrossRefGoogle Scholar
  71. Niklasson M, Drakenberg B. 2001. A 600-year tree-ring fire history from Norra Kvills National Park, southern Sweden: Implications for conservation strategies in the hemiboreal zone. Biol Conserv, 101: 63–71CrossRefGoogle Scholar
  72. Niklasson M, Lindbladh M, Björkman L. 2002. A long term record of Quercus decline, logging and fire history in a southern Swedish Fagus-Picea forest. J Veg Sci, 13: 765–774Google Scholar
  73. Odgaard B V. 1994. The Holocene vegetation history of northern West Jutland, Denmark. Opera Bot, 123: 1–171Google Scholar
  74. Ohlson M, Tryterud E. 2000. Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. Holocene, 10: 519–525CrossRefGoogle Scholar
  75. Ohlson M, Brown K J, Birks H J B, et al. 2011. Invasion of Norway spruce diversifies the fire regime in boreal European forests. J Ecol, 99: 395–403Google Scholar
  76. Olsson F, Lemdahl G. 2009. A continuous Holocene beetle record from the site Stavsåkra, southern Sweden: Implications for the last 10 600 years of forest and land use history. J Quat Sci, 24: 612–626CrossRefGoogle Scholar
  77. Olsson F, Lemdahl G. 2010. A forest history for the last 10 900 years at the site Storasjö, southern Sweden: Implications from beetle assemblages. J Quat Sci, 25: 1211–1221CrossRefGoogle Scholar
  78. Olsson F, Gaillard M J, Lemdahl G, et al. 2010. A continuous record of fire covering the last 10,500 calendar years from southern Sweden—The role of climate and human activities. Palaeogeogr Palaeoclimatol Palaeoecol, 291: 128–141CrossRefGoogle Scholar
  79. Overballe-Petersen M V, Nielsen A B, Bradshaw R H W. 2013. Quantitative vegetation reconstruction from pollen analysis and historical inventory data around a Danish small forest hollow. J Veg Sci, 24: 755–771CrossRefGoogle Scholar
  80. Pitkänen A, Tolonen K, Jungner H. 2001. A basin-based approach to the long-term history of forest fires as determined from peat strata. Holocene, 11: 599–605CrossRefGoogle Scholar
  81. Pitkänen A, Huttunen P, Jungner H, et al. 2002. A 10000 year local forest fire history in a dry heath forest site in eastern Finland, reconstructed from charcoal layer records of a small mire. Can J Forest Res, 32: 1875–1880CrossRefGoogle Scholar
  82. Power M J, Marlon J, Ortiz N, et al. 2008. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim Dynam, 30: 247–272CrossRefGoogle Scholar
  83. Punt W. 1976–2003. The Northwest European Pollen Flora I-VIII. Amsterdam: ElsevierGoogle Scholar
  84. Regnell M, Gaillard M, Bartholin T S, et al. 1995. The environment and the use of plants by humans during Late Mesolithic time (Ertebølle culture) in southern Sweden. Veget Hist Archaeobot, 4: 67–91CrossRefGoogle Scholar
  85. Rius D, Vannière B, Galop D, et al. 2011. Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quat Sci Rev, 30: 1696–1709CrossRefGoogle Scholar
  86. Skoglund P. 2005. Vardagens Landskap-Lokala Perspektiv på Bron-sålderns materiella kultur. Stockholm: Almqvist & Wiksell InternationalGoogle Scholar
  87. Sillasoo Ü, Väliranta M, Tuittila E S. 2011. Fire history and vegetation recovery in two raised bogs at the Baltic Sea. J Veg Sci, 22: 1084–1093CrossRefGoogle Scholar
  88. Stockmarr J. 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores, 13: 615–621Google Scholar
  89. Sugita S. 1994. Pollen representation of vegetation in Quaternary sediments — Theory and method in patchy vegetation. J Ecol, 82: 881–897CrossRefGoogle Scholar
  90. Sugita S. 2007a. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene, 17: 229–241CrossRefGoogle Scholar
  91. Sugita S. 2007b. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. Holocene, 17: 243–257CrossRefGoogle Scholar
  92. Sugita S, Parshall T, Calcote R, et al. 2010. Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quat Res, 74: 289–300CrossRefGoogle Scholar
  93. Tinner W, Conedera M, Ammann B, et al. 1998. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD1920. Holocene, 8: 31–42CrossRefGoogle Scholar
  94. Tinner W, Hubschmid P, Wehrli M, et al. 1999. Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol, 87: 273–289CrossRefGoogle Scholar
  95. Tryterud E. 2000. Holocene forest fire history in South and Central Norway. Doctor Scientiarum Theses. 2000. 11Google Scholar
  96. Valdemardotter Å. 2001. En skogshistorisk undersökning från östra Småland—Vegetationsutveckling och brandhistorik från Ekenäs I Hornsöområdet de senaste 3000 åren. Examensarbete nr 29. Alnarp: Institutionen för Sydsvensk Skogsvetenskap, SLU, SwedenGoogle Scholar
  97. Vannière B, Power M J, Roberts N, et al. 2011. Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500-2500 cal. BP). Holocene, 21: 53–73CrossRefGoogle Scholar
  98. Vannière B, Magny M, Joannin S, et al. 2013. Orbital changes, variation in solar activity and increased anthropogenic activities: Controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy. Clim Past, 9: 1193–1209CrossRefGoogle Scholar
  99. Von Stedingk H. 1999. Vegetationsutveckling och brandhistorik i Tyresta under 9000 år—en pollenanalytisk studie av en skvattramtallmyr I Tyresta nationalpark, Södermanland. Umeå: Department of Forest Vegetation Ecology, Swedish University of Agricultural Science, SwedenGoogle Scholar
  100. Wäglind J. 2004. En översiktlig brandhistorisk analys av Storasjöområdets naturreservat, Kronobergs län. Master Thesis. Kalmar: Kalmar UniversityGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • QiaoYu Cui
    • 1
    • 2
  • Marie-José Gaillard
    • 1
  • Fredrik Olsson
    • 3
  • Annica Greisman
    • 1
  • Geoffrey Lemdahl
    • 1
  • Ganna Zernova
    • 1
  1. 1.Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
  2. 2.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Department of Historical, Philosophical and Religious StudiesUmeå UniversityUmeåSweden

Personalised recommendations