Science China Earth Sciences

, Volume 58, Issue 1, pp 138–150 | Cite as

Quality assessment of onboard GPS receiver and its combination with DORIS and SLR for Haiyang 2A precise orbit determination

  • Jing Guo
  • QiLe Zhao
  • Xiang Guo
  • XiangLin Liu
  • JingNan Liu
  • Quan Zhou
Research Paper

Abstract

The GPS, DORIS, and SLR instruments are installed on Haiyang 2A (HY2A) altimetry satellite for Precise Orbit Determination (POD). Among these instruments, the codeless GPS receiver is the state-of-art Chinese indigenous onboard receiver, and it is the first one successfully used for Low Earth Orbit (LEO) satellite. Firstly, the contribution assesses the performance of the receiver through an analysis of data integrity, numbers of all tracked and valid measurements as well as multipath errors. The receiver generally shows good performance and quality despite a few flaws. For example, L2 observations are often missing in low elevations, particularly during the ascent of GPS satellites, and the multipath errors of P1 show a slightly abnormal pattern. Secondly, the PCO (Phase Center Offset) and PCV (Phase Center Variation) of the antenna of the GPS receiver are determined in this contribution. A significant leap for Z-component of PCO up to −1.2 cm has been found on 10 October 2011. Thirdly, the obtained PCO and PCV maps are used for GPS only POD solutions. The post-fit residuals of ionosphere-free phase combinations reduce almost 50%, and the radial orbit differences with respect to CNES (Centre National d’Etudes Spatiales) Precise Orbit Ephemeris (POEs) improve about 13.9%. The orbits are validated using the SLR data, and the RMS of SLR Observed minus Computed (O-C) residuals reduces from 17.5 to 15.9 mm. These improvements are with respect to the orbits determined without PCO and PCV. Fourthly, six types of solutions are determined for HY2A satellite using different combinations of GPS, DORIS, and SLR data. Statistics of SLR O-C residuals and cross-comparison of orbits obtained in the contribution and the CNES POEs indicate that the radial accuracy of these orbits is at the 1.0 cm level for HY2A orbit solutions, which is much better than the scientific requirements of this mission. It is noticed that the GPS observations dominate the achievable accuracy of POD, and the combination of multiple types of observations can reduce orbit errors caused by data gaps and maintain more stable and continuous orbits.

Keywords

Haiyang 2A GPS receiver multipath precise orbit determination phase center offset phase center variations DORIS SLR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atamimi Z, Collilieux X, Métivier L. 2011. ITRF2008: An improved solution of the international Terrestrial Reference Frame. J Geodesy, 85: 457–473CrossRefGoogle Scholar
  2. Auriol A, Tourain C. 2010. DORIS system: The new age. Adv Space Res, 46: 1484–1496CrossRefGoogle Scholar
  3. Berger C, Biancale R, Barlier F, et al. 1998. Improvement of the empirical thermospheric model DTM: DTM94—A comparative review of various temporal variations and prospects in space geodesy applications. J Geo desy, 72: 161–178CrossRefGoogle Scholar
  4. Bertiger W I, Bar-Sever Y E, Christensen E J, et al. 1994. GPS precise tracking of TOPEX/POSEIDON: Results and implications. J Geophys Res-Oceans, 99: 24449–24464CrossRefGoogle Scholar
  5. Bertiger W, Desai S D, Dorsey A, et al. 2010. Sub-centimeter precise orbit determination with GPS for ocean altimetry. Mar Geodesy, 33: 363–378CrossRefGoogle Scholar
  6. Cerri L, Berthias J P, Bertiger W I, et al. 2010. Precise orbit determination standards for the Jason series of altimeter missions. Mar Geodesy, 33: 378–418CrossRefGoogle Scholar
  7. Choi K R. 2003. Jason-1 precision orbit determination using GPS combined with SLR and DORIS tracking data. Doctoral Dissertation. Austin: The University of Texas at AustinGoogle Scholar
  8. Dejus M, Auriol A, Mercier F, et al. 2012. DORIS on HY-2A. IDS Workshop, Venice, ItalyGoogle Scholar
  9. Desai S D. 2002. Observing the pole tide with satellite altimetry. J Geophys Res-Oceans, 107: 3186–3198CrossRefGoogle Scholar
  10. Estey L H, Meerten C M. 1999. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solut, 3: 42–49CrossRefGoogle Scholar
  11. Flechtner F. 2007. AOD1B Product Description Document. GRACE project document 327–750, Revision 3.1Google Scholar
  12. Förste C, Bruinsma S, Shako R, et al. 2011. EIGEN-6-A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. EGU General Assembly 2011, Vienna, AustriaGoogle Scholar
  13. Fu L L, Christensen E J, Yamaron C A, et al. 1994. TOPEX mission overview. J Geophys Res-Oceans, 99: 24369–24381CrossRefGoogle Scholar
  14. Guo J, Zhao Q L, Li M, et al. 2013. GPS-derived cm level orbit for Hai-Yang 2A satellite (in Chinese). Geomat Inf Sci Wuhan Univ, 38: 52–55Google Scholar
  15. Guo J Y, Kong Q L, Qin J, et al. 2013. On precise orbit determination of HY-2 with space geodetic techniques. Acta Geophys, 61: 752–772CrossRefGoogle Scholar
  16. Guo J Y, Qin J, Kong Q L, et al. 2012. On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique. Appl Geophys, 9: 95–107CrossRefGoogle Scholar
  17. Haines B, Bar-Sever Y, Bertiger W, et al. 2004. One-centimeter orbit determination for JASON-1: New GPS-based strategies. Mar Geodesy, 17: 299–318CrossRefGoogle Scholar
  18. Hashemi Farahani H, Ditmar P, Klees R, et al. 2013. The static gravity model DGM-1S from GRACE and GOCE data: Computation, validation and an analysis of GOCE mission’s added value. J Geodesy, 87: 843–867CrossRefGoogle Scholar
  19. Hwang C, Tseng T P, Lin T J, et al. 2010. Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: Analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solut, 14: 121–131CrossRefGoogle Scholar
  20. Jäggi A, Dach R, Montenbruck O, et al. 2009. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geodesy, 83: 1145–1162CrossRefGoogle Scholar
  21. Jiang X, Wang X, Peng H, et al. 2013. The technology of precise orbit determination for HY-2A satellite (in Chinese). Engineering Sci, 15: 19–24Google Scholar
  22. Lemoine J M, Capdeville H. 2006. A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. J Geodesy, 80: 507–523CrossRefGoogle Scholar
  23. Lemoine J M, Bruinsma S, Loyer S, et al. 2007. Temporal gravity field models inferred from GRACE data. Adv Space Res, 39: 1620–1629CrossRefGoogle Scholar
  24. Lemoine F G, Zelensky N P, Chinn D S, et al. 2010. Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res, 46: 1513–1540CrossRefGoogle Scholar
  25. Luthcke S B, Zelensky N P, Rowlands D D, et al. 2003. The 1-Centimeter Orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS and altimeter data. Mar Geodesy, 26: 399–421CrossRefGoogle Scholar
  26. Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn, 56: 394–415CrossRefGoogle Scholar
  27. McCarthy D D, Petit G. 2004. IERS Conventions (2003). IERS Technical Note No. 32. IERS Conventions CentreGoogle Scholar
  28. Marshall J A, Luthcke S B. 1994. Modeling radiation forces acting on TOPEX/POSEIDON for precision orbit determination. J Spacecraft Rockets, 31: 99–105CrossRefGoogle Scholar
  29. Montenbruck O, Kroes R. 2003. In-flight performance analysis of the CHAMP BlackJack GPS Receiver. GPS Solut, 7: 74–86CrossRefGoogle Scholar
  30. Ogaja C, Hedfors J. 2007. TEQC multipath metrics in MATLAB. GPS Solut, 11: 215–222CrossRefGoogle Scholar
  31. Pavlis N K, Holmes S A, Kenyon S C, et al. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Sol Earth, 117: B04406CrossRefGoogle Scholar
  32. Pearlman M R, Degnan J J, Bosworth J M. 2000. The International Laser Ranging Service. Adv Space Res, 30: 135–143CrossRefGoogle Scholar
  33. Schmid R, Rothacher M, Thaller D, et al. 2005. Absolute phase center corrections of satellite and receiver antennas: Impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut, 9: 283–293CrossRefGoogle Scholar
  34. Schmid R. 2011. Upcoming switch to IGS08/igs08.atx-Details on igs08.atx. IGSMAIL-6355, available on http://igs.org/pipermail/igsmail/2011/006347.html Google Scholar
  35. Tapley B D, Ries J C, Davis G W, et al. 1994. Precise orbit determination for TOPEX/POSEIDON. J Geophys Res-Oceans, 99: 24383–24404CrossRefGoogle Scholar
  36. Willis P, Fagard H, Ferrage P, et al. 2010. The international DORIS service, toward maturity, in DORIS: Scientific application in geodesy and geodynamics. Adv Space Res, 45: 1408–1420CrossRefGoogle Scholar
  37. Willis P, Argus D, Cerri L, et al. 2011. DPOD2008: A DORIS terrestrial reference frame for precise orbit determination. OSTST Meeting, San Diego, USAGoogle Scholar
  38. Wu B. 2012. ILRS SLR mission support request form retroreflector information for HY2A. Available on http://ilrs.gsfc.nasa.gov/docs/HY2_retroreflector.pdf Google Scholar
  39. Yunck T P, Bertiger W I, Wu S C, et al. 1994. First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon. Geophys Res Lett, 21: 541–544CrossRefGoogle Scholar
  40. Zelensky N P, Lemoine F G, Ziebart M, et al. 2010. DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res, 46: 1541–1558CrossRefGoogle Scholar
  41. Zhao G, Zhou X H, Wu B. 2012. Precise orbit determination of Haiyang-2 using satellite laser ranging. Chin Sci Bull, 58: 589–597CrossRefGoogle Scholar
  42. Zhang Q, Zhang J, Zhang H, et al. 2013. The study of HY-2A satellite engineering development and in-orbit movement (in Chinese). Engineering Sci, 15: 12–18CrossRefGoogle Scholar
  43. Ziebart M. 2004. Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecraft Rockets, 41: 840–849CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jing Guo
    • 1
  • QiLe Zhao
    • 1
  • Xiang Guo
    • 1
    • 2
  • XiangLin Liu
    • 3
  • JingNan Liu
    • 1
    • 5
  • Quan Zhou
    • 4
  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  3. 3.Fugro Intersite B.V.LeidschendamNetherlands
  4. 4.Test and Assessment Research CenterChina Satellite Navigation OfficeBeijingChina
  5. 5.Collaborative Innovation Center of Earth and Space ScienceWuhan UniversityWuhanChina

Personalised recommendations