Science China Earth Sciences

, Volume 58, Issue 1, pp 61–75 | Cite as

A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes

  • H. R. Bogena
  • R. Bol
  • N. Borchard
  • N. Brüggemann
  • B. Diekkrüger
  • C. Drüe
  • J. Groh
  • N. Gottselig
  • J. A. Huisman
  • A. Lücke
  • A. Missong
  • B. Neuwirth
  • T. Pütz
  • M. Schmidt
  • M. Stockinger
  • W. Tappe
  • L. Weihermüller
  • I. Wiekenkamp
  • H. Vereecken
Research Paper Special Topic: Watershed Science

Abstract

Integrated observation platforms have been set up to investigate consequences of global change within a terrestrial network of observatories (TERENO) in Germany. The aim of TERENO is to foster the understanding of water, energy, and matter fluxes in terrestrial systems, as well as their biological and physical drivers. Part of the Lower Rhine Valley-Eifel observatory of TERENO is located within the Eifel National Park. Recently, the National Park forest management started to promote the natural regeneration of near-natural beech forest by removing a significant proportion of the spruce forest that was established for timber production after World War II. Within this context, the effects of such a disturbance on forest ecosystem functioning are currently investigated in a deforestation experiment in the Wüstebach catchment, which is one of the key experimental research sites within the Lower Rhine Valley-Eifel observatory. Here, we present the integrated observation system of the Wüstebach test site to exemplarily demonstrate the terrestrial observatory concept of TERENO that allows for a detailed monitoring of changes in hydrological and biogeochemical states and fluxes triggered by environmental disturbances. We present the observation platforms and the soil sampling campaign, as well as preliminary results including an analysis of data consistency. We specifically highlight the capability of integrated datasets to enable improved process understanding of the post-deforestation changes in ecosystem functioning.

Keywords

terrestrial observatory deforestation experiment integrated monitoring concept 

References

  1. Abdou H M, Flury M. 2004. Simulation of water flow and solute transport in free drainage lysimeters and field soils with heterogeneous structures. Eur J Soil Sci, 55: 229–241CrossRefGoogle Scholar
  2. Allen R G, Pereira L S, Raes D, et al. 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. Rome: FAO-Food and Agriculture Organization of the United NationsGoogle Scholar
  3. Anderson S P, Bales R C, Duffy C J. 2008. Critical zone observatories: Building a network to advance interdisciplinary study of Earth surface processes. Mineral Mag, 72: 7–10CrossRefGoogle Scholar
  4. Andréassian V. 2004. Waters and forests: From historical controversy to scientific debate. J Hydrol, 291: 1–27CrossRefGoogle Scholar
  5. Bent G C. 2001. Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. For Ecol Manage, 143: 115–129CrossRefGoogle Scholar
  6. Berger T W, Untersteiner H, Schume H, et al. 2008. Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand. For Ecol Manage, 255: 605–618CrossRefGoogle Scholar
  7. Best A, Zhang L, McMahon T A, et al. 2003. A critical review of paired catchment studies with reference to seasonal flows and climatic variability. Technical Report CSIRO. Canberra, Australia. 30Google Scholar
  8. Bogena H, Schulz K, Vereecken H. 2006. Towards a network of observatories in terrestrial environmental research. Adv Geosci, 9: 109–114CrossRefGoogle Scholar
  9. Bogena H R, Herbst M, Huisman J A, et al. 2010. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J, 9: 1002–1013CrossRefGoogle Scholar
  10. Bogena H R, Kunkel R, Krüger E, et al. 2012. TERENO-Long-term monitoring network for terrestrial research. Hydrol Wasserb, 3: 138–143Google Scholar
  11. Bogena H R, Huisman J A, Baatz R, et al. 2013. Accuracy of the cosmicray soil water content probe in humid forested ecosystems: A worst case scenario. Water Resour Res, 49: 5778–5791CrossRefGoogle Scholar
  12. Borchardt H. 2012. Impact of pleistocene cover-beds on discharge-The anthropogenic influenced Wüstebach-River (Nationalpark Eifel) as an example. PhD Thesis. Aachen: Technical University of Aachen (RWTH Aachen). 299Google Scholar
  13. Bosch J M, Hewlett J D. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol, 55: 3–23CrossRefGoogle Scholar
  14. Brown A E, Western A W, McMahon T A, et al. 2012. Impact of forest cover changes on annual streamflow and flow duration curves. J Hydrol, 483: 39–50CrossRefGoogle Scholar
  15. Burt T P, Howden N J K, Worrall F, et al. 2008. Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in South East England. Biogeosciences, 5: 1529–1535CrossRefGoogle Scholar
  16. Čermák J, Kučera J, Nadezhdina N. 2004. Sapflow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18: 529–546CrossRefGoogle Scholar
  17. Cornelissen T, Diekkrüger B, Bogena H R. 2014. Importance of a bedrock aquifer in the 3D simulation of discharge and soil moisture patterns at different spatial and temporal scales-The Wüstebach case study. J Hydrol, doi: dx.doi.org/10.1016/j.jhydrol.2014.01.060Google Scholar
  18. Delzon S, Loustau D. 2005. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agric For Meteorol, 129: 105–119CrossRefGoogle Scholar
  19. Cooper B. 1990. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia, 202: 13–26CrossRefGoogle Scholar
  20. Budyko M I. 1974. Climate and Life. New York: Academic Press. 508Google Scholar
  21. Burt, T P, Pinay G, Matheson F E, et al. 2002. Water table fluctuations in the riparian zone: Comparative results from a pan-European experiment. J Hydrol, 265: 129–148CrossRefGoogle Scholar
  22. Desilets D, Zreda M. 2013. Footprint diameter for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations. Water Resour Res, 49, doi: 10.1002/wrcr.20187Google Scholar
  23. Diekkrüger B, Arning M. 1995. Simulation of water fluxes using different methods for estimating soil parameters. Ecol Model, 81: 83–95CrossRefGoogle Scholar
  24. Drüe C, Ney P, Heinemann G, et al. 2012. Observation of atmosphere-forest exchange processes at the TERENO site Wüstebach. San Francisco: AGU Conference. 03-07 Dec, 2012, http://fallmeeting.agu.org/2012/files/2012/11/Druee_Wuestebach_Poster3.pdf Google Scholar
  25. Dwersteg D. 2012. Spatial and temporal variability of soil CO2 efflux in a spruce-dominated forest in the Eifel National Park, Germany. PhD Thesis. Bonn: University of Bonn. http://hss.ulb.uni-bonn.de/2012/2823/2823.htm. 138Google Scholar
  26. Ecomatik. 2002. User manual for radius dendrometer (Type DR) for measuring changes in radius of plant stems. Dachau: Ecomatik Umweltmess- und Datentechnik. 4Google Scholar
  27. Ecomatik. 2005. User manual for SF-L Sensor-Patent pending. Version 1.3. Dachau: Ecomatik Umweltmess-und Datentechnik. 9Google Scholar
  28. Etmann M. 2009. Dendrologische Aufnahmen im Wassereinzugsgebiet Oberer Wüstebach anhand verschiedener Mess-und Schätzverfahren. Master Thesis. Münster: University of Münster. 80Google Scholar
  29. Fang C, Moncrieff J. 1999. A model for soil CO2 production and transport 1: Model development. Agric For Meteorol, 95: 236–255CrossRefGoogle Scholar
  30. Gebler S, Hendricks-Franssen H J, Pütz T, et al. 2013. Simultaneous estimation of actual evapotranspiration and precipitation by weighable lysimeters and comparison with eddy covariance and rain gauge measurements. Proceed Gumpensteiner Lys, 15: 199–202Google Scholar
  31. Gonfiantini R. 1978. Standards for stable isotope measurements in natural compounds. Nature, 271: 534–536CrossRefGoogle Scholar
  32. Graf A, Bogena H, Hardelauf H, et al. 2014. Spatiotemporal relations between water budget components and soil water content patterns of a forested tributary catchment. Water Resour Res, doi: 10.1002/2013WR014516Google Scholar
  33. Granier A. 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc de arbres. Ann Sci For, 42: 193–200CrossRefGoogle Scholar
  34. Hibbert A R. 1967. Forest treatment effects on water yield. In: Sopper W E, Lull H W, eds. International Symposiumon on Forest Hydrology. Oxford: Pergamon. 813Google Scholar
  35. HK100. 2009. Hydrogeological map of North Rhine-Westphalia (1:100000). Geological Survey North Rhine-Westphalia, Krefeld, GermanyGoogle Scholar
  36. Huisman J A, Breuer L, Bormann H, et al. 2009. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Adv Water Resour, 32: 159–170CrossRefGoogle Scholar
  37. Hulvey K B, Hobbs R J, Standish R J, et al. 2013. Benefits of tree mixes in carbon plantings. Nat Clim Chang, 3: 869–874, doi: 10.1038/nclimate1862CrossRefGoogle Scholar
  38. ICOS. 2014. Integrated Carbon Observation System. http://www.icos-infrastructure.eu, last verified 6 March, 2014Google Scholar
  39. Jensen K H and Illangasekare T H. 2011. HOBE—A hydrological observatory in Denmark. Vadose Zone J, 10: 1–7, doi: 10.2136/vzj2011.0006CrossRefGoogle Scholar
  40. Katul G G, Oren R, Manzoni S, et al. 2012. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophysics, 50: 1–25, doi: 10.1029/2011RG000366CrossRefGoogle Scholar
  41. Kelliher F M, Leuning R, Schulze E D. 1993. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95: 153–163CrossRefGoogle Scholar
  42. Köstner B, Clausnitzer F. 2011. Die Transpiration eines Fichten-und Buchenbestandes unter Bodentrockenheit im Tharandter Wald. Waldökologie Landschaftsforschung und Naturschutz, 12: 29–35Google Scholar
  43. Lockaby G, Nagy C, Vose J M, et al. 2013. Water and Forests. In: Wear D N, Greis J G, eds. The Southern Forest Futures Project. USDA Forest Service, Southern Research Station. General Technical Report. Asheville, NCGoogle Scholar
  44. Lu P, Biron P, Bréda N, Granier A. 1995. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in The Vosges Mountains: Water potential, stomatal conductance and transpiration. Ann Sci For, 52: 117–129CrossRefGoogle Scholar
  45. Mauder M, Cuntz M, Drüe C, et al. 2013. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol, 169: 122–135CrossRefGoogle Scholar
  46. Neill C, Deegan L A, Thomas S M, et al. 2001. Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl, 11: 1817–1828CrossRefGoogle Scholar
  47. NEON. 2014. National Ecological Observation Network. http://www.neoninc.org. Last verified 6 March, 2014Google Scholar
  48. Reichstein M, Bahn M, Ciais P, et al. 2013. Climate extremes and the carbon cycle. Nature, 500: 287–295CrossRefGoogle Scholar
  49. Richter F. 2008. Bodenkarte zur Standorterkundung. Verfahren Quellgebiet Wüstebachtal (Forst). Geological Survey North Rhine-Westphalia, Krefeld, GermanyGoogle Scholar
  50. Rosenbaum U, Bogena H R, Herbst M, et al. 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour Res, 48, W10544, doi: 10.1029/2011WR011518CrossRefGoogle Scholar
  51. Rosenbaum U, Huisman J A, Weuthen A, et al. 2010. Sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Vadose Zone J, 9: 181–186, doi: 10.2136/vzj2009.0036CrossRefGoogle Scholar
  52. Schmid H P, Oke T R. 1990. A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc, 116: 965–988, doi: 10.1002/qj.49711649409CrossRefGoogle Scholar
  53. Stockinger M, Bogena H R, Lücke A, et al. 2014. Seasonal soil moisture pattern control transit time distributions in a forested headwater catchment. Water Resour Res, in pressGoogle Scholar
  54. Subke J A, Inglima I, Cotrufo M S. 2006. Trends and methodological impacts in soil CO2 efflux partitioning: A meta-analytical review. Glob Chang Biol, 12: 921–943CrossRefGoogle Scholar
  55. Sucker C, von Wilpert K, Puhlmann H. 2011. Acidification reversal in low mountain range streams of Germany. Environ Monit Assess, 174: 65–89CrossRefGoogle Scholar
  56. TERN. 2014. Terrestrial Ecosystem Research Network. http://www.tern.org.au. Last verified 6 March, 2014Google Scholar
  57. Tobón C, Bruijnzeel L A, Frumau K F A, et al. 2010. Changes in soil physical properties after conversion of tropical mountain cloud forest to pasture in northern Costa Rica. In: Bruijnzeel L A, Scatena F N, Hamilton L S, eds. Tropical Montane Cloud Forests: Science for Conversion and Management. Cambridge: Cambridge University PressGoogle Scholar
  58. Van Dijk A, Moene A, de Bruin H. 2004. The principles of surface flux physics: Theory, practice and description of the ECPACK library. In: Meteorology and Air Quality Group, ed. Wageningen: Wageningen University. 99Google Scholar
  59. Vereecken H, Huisman J A, Bogena H R, et al. 2008. On the value of soil moisture measurements in vadose zone hydrology—A review. Water Resour Res, 44, W00D06, doi: 10.1029/2008WR006829Google Scholar
  60. Viville D, Biron P, Granier A, et al. 1993. Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France). J Hydrol, 144: 273–282, doi: 10.1016/0022-1694(93)90175-9CrossRefGoogle Scholar
  61. Weiler M, McGlynn B L, McGuire K J, et al. 2003. How does rainfall become runoff? A combined tracer and runoff transfer function approach. Water Resour Res, 39, doi: 10.1029/2003WR002331Google Scholar
  62. Whelan M, Sanger L, Baker M, et al. 1998. Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmos Environ, 32: 3493–3501CrossRefGoogle Scholar
  63. Williams C A, Vanderhoof M K, Khomik M, et al. 2013. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Glob Chang Biol, 20: 992–1007CrossRefGoogle Scholar
  64. Li X, Cheng G, Liu S, et al. 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull Amer Meteor Soc, 94: 1145–1160CrossRefGoogle Scholar
  65. Zacharias S, Bogena H, Samaniego L, et al. 2011. A network of terrestrial environmental observatories in Germany. Vadose Zone J, 10: 955–973CrossRefGoogle Scholar
  66. Zreda M, Desilets D, Ferré T P A, et al. 2008. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys Res Lett, 35, doi: 10.1029/2008GL035655Google Scholar
  67. Zreda M, Shuttleworth W J, Xeng X, et al. 2012. COSMOS: The COsmicray Soil Moisture Observing System. Hydrol Earth Syst Sci, 16: 4079–4099CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • H. R. Bogena
    • 1
  • R. Bol
    • 1
  • N. Borchard
    • 1
  • N. Brüggemann
    • 1
  • B. Diekkrüger
    • 2
  • C. Drüe
    • 3
  • J. Groh
    • 1
  • N. Gottselig
    • 1
  • J. A. Huisman
    • 1
  • A. Lücke
    • 1
  • A. Missong
    • 1
  • B. Neuwirth
    • 2
    • 4
  • T. Pütz
    • 1
  • M. Schmidt
    • 1
  • M. Stockinger
    • 1
  • W. Tappe
    • 1
  • L. Weihermüller
    • 1
  • I. Wiekenkamp
    • 1
  • H. Vereecken
    • 1
  1. 1.Agrosphere Institute (IBG-3)Forschungszentrum JülichJülichGermany
  2. 2.Department of GeographyUniversity of BonnBonnGermany
  3. 3.Department of Environmental MeteorologyUniversity of TrierTrierGermany
  4. 4.DeLaWi-Tree-Ring AnalyticsWindeckGermany

Personalised recommendations