Advertisement

Science China Earth Sciences

, Volume 57, Issue 5, pp 869–877 | Cite as

Life in extreme environments: Approaches to study life-environment co-evolutionary strategies

  • Xiang XiaoEmail author
  • Yu Zhang
Review Special Topic: Frontiers of Geobiology

Abstract

The term “extreme environments” describes the conditions that deviate from what mesophilic cells can tolerate. These conditions are “extreme” in the eye of mankind, but they may be suitable or even essential living conditions for most microorganisms. Hyperthermophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-temperature and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modern extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct early life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the pathway of evolution, the structure of an ecosystem, and the physiology of cells. “Following energy” is an essential approach to understand the boundaries of life and to search for life beyond Earth.

Keywords

energy extremophile adaptation coevolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ao P, Lee L W, Lidstrom M E, et al. 2008. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens Am1 growth as Validation. Chin J Biotech, 24: 980–994CrossRefGoogle Scholar
  2. Auguet J C, Triado-Margarit X, Nomokonova N, et al. 2012. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a Deep Oligotrophic Lake. ISME J, 6: 1786–1797CrossRefGoogle Scholar
  3. Bae S S, Kim T W, Lee H S, et al. 2012. H2 production from Co, formate or starch using the hyperthermophilic Archaeon, Thermococcus Onnurineus. Biotechnol Lett, 34: 75–79CrossRefGoogle Scholar
  4. Baross J A, Benner S A, Cody G D, et al. 2007. The Limits of Organic Life in Planetary Systems. Washington DC: The National Academies Press.Google Scholar
  5. Battistuzzi F U, Feijao A, Hedges S B. 2004. A genomic timescale of Prokaryote evolution: Insights into the origin of Methanogenesis, Phototrophy, and the Colonization of land. BMC Evol Biol, 4: 9CrossRefGoogle Scholar
  6. Bekker A, Holland H D, Wang P L, et al. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117–120CrossRefGoogle Scholar
  7. Biddle J F, Cardman Z, Mendlovitz H, et al. 2012. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J, 6: 1018–1031CrossRefGoogle Scholar
  8. Blank C E. 2009. Phylogenomic dating-the relative antiquity of Archaeal Metabolic and Physiological Traits. Astrobiology, 9: 193–219CrossRefGoogle Scholar
  9. Boussau B, Daubin V. 2010. Genomes as documents of evolutionary history. Trends Ecol Evol, 25: 224–232CrossRefGoogle Scholar
  10. Canfield D E, Kump L R. 2013. Carbon cycle makeover. Science, 339: 533–534CrossRefGoogle Scholar
  11. Cavicchioli R. 2006. Cold-adapted Archaea. Nat Rev Microbiol, 4: 331–343CrossRefGoogle Scholar
  12. D’Amico S, Collins T, Marx J C, et al. 2006. Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7: 385–389CrossRefGoogle Scholar
  13. Daniel R M, Cowan D A. 2000. Biomolecular stability and life at high temperatures. Cell Mol Life Sci, 57: 250–264CrossRefGoogle Scholar
  14. David L A L, Alm E J E. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469: 93–96CrossRefGoogle Scholar
  15. Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth’s biogeochemical Cycles. Science, 320: 1034–1039CrossRefGoogle Scholar
  16. Farquhar J, Bao H M, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758CrossRefGoogle Scholar
  17. Gribaldo S, Brochier-Armanet C. 2006. The origin and evolution of Archaea: A state of the art. Philos Trans R Soc Lond B Biol Sci, 361: 1007–1022CrossRefGoogle Scholar
  18. Hoehler T M, Jorgensen B B. 2013. Microbial life under extreme energy limitation. Nat Rev Microbiol, 11: 83–94CrossRefGoogle Scholar
  19. Hoehler T M. 2004. Biological energy requirements as Quantitative boundary conditions for life in the subsurface. Geobiology, 2: 205–215CrossRefGoogle Scholar
  20. Hoehler T M. 2007. An energy balance concept for habitability. Astrobiology, 7: 824–838CrossRefGoogle Scholar
  21. Hoehler T M, Amend J P, Shock E L. 2007. Introduction-A “Follow the Energy” approach for astrobiology. Astrobiology, 7: 819–823CrossRefGoogle Scholar
  22. Huber C, Eisenreich W, Hecht S, et al. 2003. A possible primordial peptide cycle. Science, 301: 938–940CrossRefGoogle Scholar
  23. Huber C, Wächtershäuser G. 1998. Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: Implications for the origin of life. Science, 281: 670–672CrossRefGoogle Scholar
  24. Huber C, Wächtershäuser G. 2006. Alpha-gydroxy and alpha-amino acids under possible hadean, volcanic origin-of-life conditions. Science, 314: 630–632CrossRefGoogle Scholar
  25. Imlay J A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Natl Rev Microbiol, 11: 443–454CrossRefGoogle Scholar
  26. Kallmeyer J, Pockalny R, Adhikari R R, et al. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109: 16213–16216CrossRefGoogle Scholar
  27. Kato C C, Qureshi M H M. 1999. Pressure response in deep-sea Piezophilic bacteria. J Mol Microbiol Biotechnol, 1: 87–92Google Scholar
  28. Kim Y J, Lee H S, Kim E S, et al. 2010. Formate-driven growth coupled with H2 production. Nature, 467: 352–356CrossRefGoogle Scholar
  29. Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 219: 53–69CrossRefGoogle Scholar
  30. Lang S Q, Butterfield D A, Schulte M, et al. 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the lost city hydrothermal field. Geochim Cosmochim Acta, 74: 941–952CrossRefGoogle Scholar
  31. Lenton T M, Schellnhuber H J, Szathmary E. 2004. Climbing the co-evolution ladder. Nature, 431: 913CrossRefGoogle Scholar
  32. Macalady J L, Vestling M M, Baumler D, et al. 2004. Tetraether-linked membrane monolayers in Ferroplasma spp: A key to survival in acid. Extremophiles, 8: 411–419CrossRefGoogle Scholar
  33. Martin W, Baross J, Kelley D, et al. 2008. Hydrothermal vents and the origin of life. Nat Rev Microbiol, 6: 805–814Google Scholar
  34. Partin C A, Bekker A, Planavsky N J, et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett, 369: 284–293CrossRefGoogle Scholar
  35. Price P B, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA, 101: 4631–4636CrossRefGoogle Scholar
  36. Roche B, Aussel L, Ezraty B, et al. 2013. Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochim Biophys Acta, 1827: 455–469CrossRefGoogle Scholar
  37. Rossel P E, Elvert M, Ramette A, et al. 2011. Factors controlling the distribution of Anaerobic Methanotrophic communities in marine environments: Evidence from intact Polar membrane lipids. Geochim Cosmochim Acta, 75: 164–184CrossRefGoogle Scholar
  38. Roy H, Kallmeyer J, Adhikari R R, et al. 2012. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science, 336: 922–925CrossRefGoogle Scholar
  39. Schrödinger E. 1944. What Is Life. Dublin: Cambridge University Press. 194Google Scholar
  40. Siddiqui K S, Cavicchioli R. 2006. Cold-adapted enzymes. Annu Rev Biochem, 75: 403–433CrossRefGoogle Scholar
  41. Stetter K O. 2006a. Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci, 361: 1837–1843CrossRefGoogle Scholar
  42. Stetter K O. 2006b. History of discovery of the first hyperthermophiles. Extremophiles, 10: 357–362CrossRefGoogle Scholar
  43. Takai K, Nakamura K. 2011. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol, 14: 282–291CrossRefGoogle Scholar
  44. Thauer R K. 2011. Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol, 14: 292–299CrossRefGoogle Scholar
  45. Thauer R K, Kaster A K, Seedorf H, et al. 2008. Methanogenic Archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6: 579–591CrossRefGoogle Scholar
  46. Thorgersen M P M, Stirrett K K, Scott R A R, et al. 2012. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic Archaeon, Pyrococcus Furiosus. Proc Nati Acad Sci USA, 109: 18547–18552CrossRefGoogle Scholar
  47. Tijhuis L, Van Loosdrecht M C, Heijnen J J. 1993. A thermodynamically based correlation for maintenance gibbs rnergy tequirements in aerobic and anaerobic chemotrophic growth. Biotech Bioengin, 42: 509–519CrossRefGoogle Scholar
  48. Valentine D L. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol, 5: 316–323CrossRefGoogle Scholar
  49. Wang F P, Zhang Y, Chen Y, et al. in press. Methanotrophic Archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J, doi: 10.1038/ismej.2013.212Google Scholar
  50. Wang J Y, Zhu S G, Xu C F, 2008. Essential Biochemistry (in Chinese). 3rd ed. Beijing: Higher Education PressGoogle Scholar
  51. Windman T, Zolotova N, Schwandner F, et al. 2007. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. Astrobiology, 7: 873–890CrossRefGoogle Scholar
  52. Xie X, Liang J, Pu T, et al. 2012. Phosphorothioate DNA as an antioxidant in cacteria. Nucleic Acids Res, 40: 9115–9124CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Microbial MetabolismShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations