Science China Earth Sciences

, Volume 57, Issue 8, pp 1929–1943 | Cite as

High-frequency polarity swings during the Gauss-Matuyama reversal from Baoji loess sediment

  • TianShui Yang
  • Masayuki Hyodo
  • ZhenYu Yang
  • ShiHong Zhang
  • Toshiaki Mishima
  • HuaiChun Wu
  • HaiYan Li
  • Yi Li
  • XingAn Shi
  • Kan Wang
  • YiMing Ma
Research Paper


Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.


polarity reversals geomagnetic episodes Gauss-Matuyama loess 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An Z S, Kukla G, Porter S C, et al. 1991. Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130000 years. Quat Res, 36: 29–36CrossRefGoogle Scholar
  2. Burakov K S, Gurary G Z, Khramov A N, et al. 1976. Some peculiarities of the virtual pole positions during reversals. J Geomagn Geoelectr, 28: 295–307CrossRefGoogle Scholar
  3. Channell J E T, Curtis J H, Flower B P. 2004. The Matuyama-Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys J Int, 158: 489–505CrossRefGoogle Scholar
  4. Channell J E T, Labs J, Raymo M E. 2003. The Réunion Subchronozone at ODP Site 981 (Feni Drift, North Atlantic). Earth Planet Sci Lett, 191: 61–74Google Scholar
  5. Channell J E T, Lehman B. 1997. The last two geomagnetic polarity reversals recorded in high-deposition rate sediment drifts. Nature, 389: 712–715CrossRefGoogle Scholar
  6. Channell J E T, Mazaud A, Sullivan P, et al. 2002. Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). J Geophys Res, 107: 2114, doi: 10.1029/2001JB000491CrossRefGoogle Scholar
  7. Chauvin A, Roperch P, Duncan R A. 1990. Records of geomagnetic reversals from volcanic islands of French Polynesia. II. Paleomagnetic study of a flow sequence (1.2–0.6 Ma) from the island of Tahiti and discussion of reversal models. J Geophys Res, 95: 2727–2752CrossRefGoogle Scholar
  8. Clement B M, Kent D V. 1991. A southern hemisphere record of the Matuyama-Brunhes polarity reversal. Geophys Res Lett, 18: 81–84CrossRefGoogle Scholar
  9. Clement B M. 2004. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature, 428: 637–639CrossRefGoogle Scholar
  10. Coe R S, Hongre L, Glatzmaier G A. 2000. An examination of simulated geomagnetic reversals from a palaeomagnetic perspective. Philos Trans R Soc A-Math Phys Eng Sci, 358: 1141–1170CrossRefGoogle Scholar
  11. Coe R S, Prévot M, Camps P. 1995. New evidence for extraordinarily rapid change of the geomagnetic field during a reversal. Nature, 374: 687–692CrossRefGoogle Scholar
  12. Coe R S, Singer B S, Pringle M S, et al. 2004. Matuyama-Brunhes reversal and Kamikatsura event on Maui: Paleomagnetic directions, 40Ar/39Ar ages and implications. Earth Planet Sci Lett, 222: 667–684CrossRefGoogle Scholar
  13. Cogné J P. 2003. PaleoMac: A Macintosh? application for treating paleomagnetic data and making plate reconstructions. Geochem Geophys Geosyst, 4: 1007CrossRefGoogle Scholar
  14. Creer K, Ispir Y. 1970. An interpretation of the behavior of the geomagnetic field during polarity transitions. Phys Earth Planet Inter, 2: 283–293CrossRefGoogle Scholar
  15. Deng C L, Zhu R X, Verosub K L, et al. 2000. Paleoclimatic significance of the temperature-dependent suscep tibility of Holocene loess along a NW-SE transect in the Chinese Loess Plateau. Geophys Res Lett, 27: 3715–3718CrossRefGoogle Scholar
  16. Ding Z L, Derbyshire E, Yang S L, et al. 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ 18O record. Paleoceanography, 17: doi: 1033.10.1029/2001PA000725Google Scholar
  17. Ding Z L, Yu Z W, Rutter N W, et al. 1994. Towards an orbital time scale for Chinese loess deposits. Quat Sci Rev, 13: 39–70CrossRefGoogle Scholar
  18. Enkin R J. 1990. Formation et deformation de l’Asie depuis la fin de l’ere primaire: Les apports de l’etude paleomagnetique des formations secondaires de Chine du Sud. Doctor Dissertation. Paris: Univ de ParisGoogle Scholar
  19. Fang X M, Li J J, Van der Voo R, et al. 1997. A record of the Blake event during the last interglacial paleosol in the western Loess Plateau of China. Earth Planet Sci Lett, 146: 73–82CrossRefGoogle Scholar
  20. Glatzmaier G A, Coe R S, Hongre L, et al. 1999. The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401: 885–890CrossRefGoogle Scholar
  21. Glen J M G, Coe R S, Liddicoat J C. 1999. A detailed record of paleomagnetic field change from Searles Lake, California. 2. The Gauss/Matuyama polarity reversal. J Geophys Res, 104: 12883–12849CrossRefGoogle Scholar
  22. Guo B, Zhu R X, Florindo F, et al. 2002. A short, reverse polarity interval within the Jaramillo Subchron: Evidence from the Jingbian section, northern Chinese Loess Plateau. J Geophys Res, 107: 2124, doi: 10.1029/2001JB000706CrossRefGoogle Scholar
  23. Guo B, Zhu R X, Florindo F, et al. 2001. Pedogenesis affecting the Matuyama-Brunhes polarity transition recorded in Chinese loess? Chin Sci Bull, 46: 975–980CrossRefGoogle Scholar
  24. Guyodo Y, Acton G D, Brachfeld S, et al. 2001. A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP Site 1101). Earth Planet Sci Lett, 215: 1–12Google Scholar
  25. Heller F, Liu T S. 1984. Magnetism of Chinese loess deposits. Geophys J R Astron Soc, 77: 125–141CrossRefGoogle Scholar
  26. Heller F, Liu T S. 1982. Magnetostratigraphical dating of loess deposits in China. Nature, 300: 431–433CrossRefGoogle Scholar
  27. Herrero-Bervera E, Walker G P L, Harrison C G A, et al. 1999. Detailed paleomagnetic study of two volcanic polarity transitions recorded in eastern Iceland. Phys Earth Planet Inter, 115: 119–135CrossRefGoogle Scholar
  28. Heslop D, Langereis C G, Dekkers M J. 2000. A new astronomical timescale for the loess deposits of Northern China. Earth Planet Sci Lett, 184: 125–139CrossRefGoogle Scholar
  29. Heslop D, Shaw J, Bloemendal J, et al. 1999. Sub-millennial scale variations in East Asian monsoon systems recorded by dust deposits from the North-Western Chinese Loess Plateau. Phys Chem Earth, 24: 785–792CrossRefGoogle Scholar
  30. Horng C S, Reberts A P, Liang W T. 2003. A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea. J Geophys Res, 108: 2059, doi: 10.1029/2001JB001698CrossRefGoogle Scholar
  31. Hyodo M, Biswas D K, Noda T, et al. 2006. Millennial-to submillennial-scale features of the Matuyama-Brunhes geomagnetic polarity transition from Osaka Bay, southwestern Japan. J Geophys Res, 111: B02103, doi: 10.1029/2004JB003584Google Scholar
  32. Jarboe N A, Coe R S, Glen J M G. 2011. Evidence from lava flows for complex polarity transitions: The new composite Steens Mountain reversal record. Geophys J Int, 186: 580–602CrossRefGoogle Scholar
  33. Jin C S, Liu Q S, Larrasoaña J C. 2012. A precursor to the Matuyama-Brunhes reversal in Chinese loess and its palaeomagnetic and stratigraphic significance. Geophys J Int, 190: 829–842CrossRefGoogle Scholar
  34. Jin C S, Liu Q S. 2010. Reliability of the natural remanent magnetization recorded in Chinese loess. J Geophys Res, 115: B04103, doi: 10.1029/2009JB006703Google Scholar
  35. Jin C S, Liu Q S. 2011. Revisiting the stratigraphic position of the Matuyama-Brunhes geomagnetic polarity boundary in Chinese loess. Palaeogeogr Palaeoclimatol Palaeoecol, 299: 309–317CrossRefGoogle Scholar
  36. Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J R Astron Soc, 62: 699–718CrossRefGoogle Scholar
  37. Kukla G. 1987. Loess stratigraphy in Central China. Quat Sci Rev, 6: 191–219CrossRefGoogle Scholar
  38. Lee T Q, Chi W R. 1990. Paleomagnetic time interval of the sedimentary sequences in coastal range (in Chinese). Proc Central Geol Survey, 4: 271–194Google Scholar
  39. Lee T Q. 1992. Study of the polarity transition record of the Upper Olduvai event from Wulochi sedimentary sequence of the Coastal Range, eastern Taiwan. TAO, 3: 503–518Google Scholar
  40. Liddicoat J C. 1982. Gauss-Matuyama polarity transition. Philos Trans R Soc A-Math Phys Eng Sci, 306: 121–128CrossRefGoogle Scholar
  41. Liu Q S, Banerjee S K, Jackson M J, et al. 2005. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis. Quat Sci Rev, 24: 195–210CrossRefGoogle Scholar
  42. Liu T S, Ding Z L. 1998. Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci, 26: 111–145CrossRefGoogle Scholar
  43. Liu X M, Xu T C, Liu T S. 1988. The Chinese loess in Xifeng, II. A study of anisotropy of magnetic susceptibility of loess from Xifeng. Geophys J Int, 92: 349–353CrossRefGoogle Scholar
  44. Liu W M, Sun J M. 2012. High-resolution anisotropy of magnetic susceptibility record in the central Chinese Loess Plateau and its paleoenvironment implications. Sci China Earth Sci, 55: 488–494CrossRefGoogle Scholar
  45. Love J J, Mazaud A. 1997. A database of the Matuyama-Brunhes magnetic reversal. Phys Earth Planet Inter, 103: 207–245CrossRefGoogle Scholar
  46. Mazaud A, Channell J E T, Xuan C, et al. 2009. Upper and lower Jaramillo polarity transitions recorded in IODP Expedition 303 North Atlantic sediments: Implications for transitional field geometry. Phys Earth Planet Inter, 172: 131–140CrossRefGoogle Scholar
  47. Mochizuki N, Oda H, Ishizuka O, et al. 2011. Paleointensity variation across the Matuyama-Brunhes polarity transition: Observations from lavas at Punaruu Valley, Tahiti. J Geophys Res, 116: B06103, doi: 10.1029/2010JB008093Google Scholar
  48. Niitsuma N. 1971. Detailed study of the sediments recording the Matuyama-Brunhes geomagnetic reversal. Tohoku Univ Sci Rep 2nd Ser (Geol), 43: 1–39Google Scholar
  49. Oda H, Shibuya H, Hsu V. 2000. High resolution paleomagnetic records of Brunhes/Matuyama polarity transition from ODP Leg 124 (Celebes and Sulu Seas). Geophys J Int, 142: 319–338CrossRefGoogle Scholar
  50. Ohno M, Murakami F, Komatsu F, et al. 2008. Paleomagnetic directions of the Gauss-Matuyama polarity transition recordedin drift sediments (IODP Site U1314) in the North Atlantic. Earth Planets Space, 60: 13–16Google Scholar
  51. Okada M, Niitsuma N. 1989. Detailed paleomagnetic records during the Brunhes-Matuyama geomagnetic reversal, and a direct determination of depth lag for magnetization in marine sediments. Phys Earth Planet Inter, 56: 133–150CrossRefGoogle Scholar
  52. Pan Y X, Zhu R X, Liu Q S, et al. 2002. Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess. Geophys Res Lett, 29: 1282, doi: 10.1029/2001GL014024CrossRefGoogle Scholar
  53. Roberts A P, Jiang W T, Florindo F, et al. 2005a. Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophys Res Lett, 32: L05307, doi: 10.1029/2004GL022137Google Scholar
  54. Roberts A P, Weaver R. 2005b. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet Sci Lett, 231: 263–277CrossRefGoogle Scholar
  55. Rolph T C. 1993. The Matuyama-Jaramillo R-N transition recorded in a loess section near Lanzhou, P. R. China. J Geomagn Geoelectr, 45: 301–315CrossRefGoogle Scholar
  56. Ruocco M, Fuller M, Haag M, et al. 1996. A Gauss-Matuyama polarity transition in a sedimentary record from Mar del Plata city, Argentina. Surv Geophys, 17: 169–172CrossRefGoogle Scholar
  57. Ruocco M. 1991. Sequential reversals from the Southern Hemisphere. Geophys Astrophys Fluid Dynam, 60: 141–148CrossRefGoogle Scholar
  58. Rutter N W, Ding Z L, Evans M E, et al. 1991. Baoji-type pedostratigraphic section, Loess Plateau, north-central China. Quat Sci Rev, 10: 1–22CrossRefGoogle Scholar
  59. Spassov S, Heller F, Evans M E, et al. 2001. The Matuyama/Brunhes geomagnetic polarity transition at Lingtai and Baoji, Chinese Loess Plateau. Phys Chem Earth, 26: 899–904CrossRefGoogle Scholar
  60. Spassov S, Heller F, Kretzschmar R, et al. 2003. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Phys Earth Planet Inter, 140: 255–275CrossRefGoogle Scholar
  61. Sun D H, Shaw J, An Z S, et al. 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys Res Lett, 25: 85–88Google Scholar
  62. Sun D H, Shaw J, An Z S, et al. 1993. Matuyama/Brunhes (M/B) transition recorded in Chinese loess. J Geomagn Geoelectr, 45: 319–330CrossRefGoogle Scholar
  63. Sun Y B, Clemens S C, An Z S, et al. 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quat Sci Rev, 25: 33–48Google Scholar
  64. Tauxe L. 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev Geophys, 31: 319–354CrossRefGoogle Scholar
  65. Tric E, Laj C, Jéhanno C, et al. 1991. High-resolution record of the Upper Olduvai transition from Po Valley (Italy) sediments: Support for dipolar transition geometry? Phys Earth Planet Inter, 65: 319–336CrossRefGoogle Scholar
  66. Valet J P, Guillaume P, Herrero-Bervera E. 2008. Geomagnetic excursions reflect an aborted polarity state. Earth Planet Sci Lett, 274: 472–478CrossRefGoogle Scholar
  67. Valet J P, Meynadier L, Guyodo Y. 2005. Geomagnetic dipole strength and reversal rate over the past two million years. Nature, 439: 802–805CrossRefGoogle Scholar
  68. Valet J P, Meynadier L. 1993. Geomagnetic field intensity and reversals during the past four million years. Nature, 366: 234–238CrossRefGoogle Scholar
  69. Valet J P, Tauxe L, Clark D R. 1988. The Matuyama-Brunhes transition recorded from Lake Tecopa sediments (California). Earth Planet Sci Lett, 87: 463–472CrossRefGoogle Scholar
  70. Verosub K. 1977. Geomagnetic excursions and their paleomagnetic record. Rev Geophys Space Phys, 15: 145–155CrossRefGoogle Scholar
  71. Wang D J, Wang Y C, Han J T, et al. 2010. Geomagnetic anomalies recorded in L9 of the Songjiadian loess section in southeastern Chinese Loess Plateau. Chin Sci Bull, 55: 520–529CrossRefGoogle Scholar
  72. Wang R H, Løvlie R. 2010. Subaerial and subaqueous deposition of loess: Experimental assessment of detrital remanent magnetization in Chinese loess. Earth Planet Sci Lett, 298: 394–404CrossRefGoogle Scholar
  73. Wang X S, Yang Z Y, Løvlie R, et al. 2006. A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1 Ma. Phys Earth Planet Inter, 159: 109–117CrossRefGoogle Scholar
  74. Yamazaki T, Oda H. 2001. A Brunhes-Matuyama polarity transition record from anoxic sediments in the South Atlantic (Ocean Drilling Program Hole 1082C). Earth Planets Space, 53: 817–827Google Scholar
  75. Yang T S, Hyodo M, Yang Z Y, et al. 2005. A first paleomagnetic and rock magnetic investigation of calcareous nodules from the Chinese Loess Plateau. Earth Planets Space, 57: 29–34Google Scholar
  76. Yang T S, Hyodo M, Yang Z Y, et al. 2007b. Early and middle Matuyama geomagnetic excursions recorded in the Chinese loess-paleosol sediments. Earth Planets Space, 59: 825–840Google Scholar
  77. Yang T S, Hyodo M, Yang Z Y, et al. 2004. Evidence for the Kamikatsura and Santa Rosa excursions recorded in eolian deposits from the southern Chinese Loess Plateau. J Geophys Res, 109: B12105, doi: 10.1029/2004JB002966CrossRefGoogle Scholar
  78. Yang T S, Hyodo M, Yang Z Y, et al. 2008. Latest Olduvai short-lived reversal episodes recorded in Chinese loess. J Geophys Res, 113: B05103, doi: 10.1029/2007JB005264Google Scholar
  79. Yang T S, Hyodo M, Yang Z Y, et al. 2010. Multiple rapid polarity swings during the Matuyama-Brunhes transition from two high-resolution loess-paleosol records. J Geophys Res, 115: B05101, doi: 10.1029/2009JB006301Google Scholar
  80. Yang T S, Hyodo M, Yang Z Y, et al. 2013. New insights into magnetic enhancement mechanism in Chinese paleosols. Palaeogeogr Palaeoclimatol Palaeoecol, 369: 493–500CrossRefGoogle Scholar
  81. Yang T S, Hyodo M, Yang Z Y, et al. 2007a. Two geomagnetic excursions during the Brunhes chron recorded in Chinese loess-paleosol sediments. Geophys J Int, 171: 104–114CrossRefGoogle Scholar
  82. Yang T S, Li H Y, Wu H C, et al. 2012. Reliability of relative paleointensity recorded in Chinese loess-paleosol sediments. Acta Geol Sin, 86: 1276–1288CrossRefGoogle Scholar
  83. Zhao X, Roberts A P. 2010. How does Chinese loess become magnetized? Earth Planet Sci Lett, 292: 112–122CrossRefGoogle Scholar
  84. Zheng H B, An Z S, Shaw J. 1992. New contributions to Chinese Plio-Pleistocene magnetostratigraphy. Phys Earth Planet Inter, 70: 146–153CrossRefGoogle Scholar
  85. Zhu R X, Ding Z L, Wu H N, et al. 1993. Details of magnetic polarity transition recorded in Chinese loess section. J Geomagn Geoelectr, 45: 289–299CrossRefGoogle Scholar
  86. Zhu R X, Guo B, Ding Z L, et al. 2000a. Gauss-Matuyama polarity transition obtained from a loess section at Weinan, north-central China. Chin J Geophys, 43: 654–671CrossRefGoogle Scholar
  87. Zhu R X, Guo B, Pan Y X, et al. 2000b. Reliability of geomagnetic secular variations recorded in a loess section at Lingtai, North-central China. Sci China Ser D-Earth Sci, 43: 1–9CrossRefGoogle Scholar
  88. Zhu R X, Laj C, Mazaud A. 1994a. The Matuyama-Brunhes and Upper Jaramillo transitions recorded in a loess section at Weinan, north-central China. Earth Planet Sci Lett, 125: 143–158CrossRefGoogle Scholar
  89. Zhu R X, Liu Q S, Jackson M J. 2004. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (<130 ka). Earth Planet Sci Lett, 221: 55–69CrossRefGoogle Scholar
  90. Zhu R X, Pan Y X, Guo B, et al. 1998. A recording phase lag between ocean and continent climate changes: Constrained by the Matuyama/Brunhes polarity boundary. Chin Sci Bull, 43: 1593–1598CrossRefGoogle Scholar
  91. Zhu R X, Pan Y X, Liu Q S. 1999. Geomagnetic excursions recorded in Chinese loess in the last 70,000 years. Geophys Res Lett, 26: 505–508CrossRefGoogle Scholar
  92. Zhu R X, Zhou L P, Laj C, et al. 1994b. The Blake geomagnetic polarity episode recorded in Chinese loess. Geophys Res Lett, 21: 697–700CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • TianShui Yang
    • 1
    • 2
  • Masayuki Hyodo
    • 3
  • ZhenYu Yang
    • 4
  • ShiHong Zhang
    • 1
    • 2
  • Toshiaki Mishima
    • 3
  • HuaiChun Wu
    • 1
  • HaiYan Li
    • 1
  • Yi Li
    • 5
  • XingAn Shi
    • 2
  • Kan Wang
    • 2
  • YiMing Ma
    • 2
  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesBeijingChina
  2. 2.School of the Earth Sciences and ResourcesChina University of GeosciencesBeijingChina
  3. 3.Research Center for Inland SeasKobe UniversityKobeJapan
  4. 4.Institute of GeomechanicsChinese Academy of Geological SciencesBeijingChina
  5. 5.Henan Institute of Nonferrous Metal ExplorationZhengzhouChina

Personalised recommendations