Skip to main content
Log in

A new LS+AR model with additional error correction for polar motion forecast

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Polar motion depicts the slow changes in the locations of the poles due to the earth’s internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction. Through statistical analysis of the time series of the LS+AR model’s short-term prediction residuals, we found that there is a good correlation of model prediction residuals between adjacent terms. These indicate that the preceding model prediction residuals and experiential adjustment matrixes can be used to correct the next prediction results, thereby forming a new LS+AR model with additional error correction that applies to polar motion prediction. Simulated predictions using this new model revealed that the proposed method can improve the accuracy and reliability of polar motion prediction. In fact, the accuracies of ultra short-term and short-term predictions using the new model were equal to the international best level at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akulenko L D, Kumakshev S A, Markov Y G. Motion of the Earth’s pole. Dokl Phys, 2002, 47: 78–84

    Article  Google Scholar 

  2. Akulenko L D, Kumakshev S A, Markov Y G, et al. A model for the polar motion of the deformable Earth adequate for astrometric data. Astron Rep, 2002, 46: 74–82

    Article  Google Scholar 

  3. Akulenko L D, Kumakshev S A, Markov Y G, et al. Forecasting the polar motions of the deformable Earth. Astron Rep, 2002, 46: 858–866

    Article  Google Scholar 

  4. Akyilmaz O, Kutterer H. Prediction of Earth rotation parameters by fuzzy inference systems. J Geodesy, 2004, 78: 82–93

    Article  Google Scholar 

  5. Kalarus M, Kosek W, Schuh H. Current results of the Earth orientation parameters prediction comparison campaign. In: Capitaine N, ed. Proceedings of the journées 2007, systèmes deréférence spatio-temporels “The celestial reference frame for thefuture”. Observatoire de Paris Systemes de Référence Temps-Espace UMR8630/CNRS, Paris, France. 159–162

  6. Kalarus M, Kosek W, Schuh H. Current results of the Earth orientation parameters prediction comparison campaign. In: AGU Fallmeeting 2007, San Francisco, California, Earth’s Reference System and Rotation: Geodesy and geoscience III posters. Eos Trans AGU 88(52), Fall Meet Suppl, Abstract No. G 43C-1480

  7. Kalarus M, Kosek W, Schuh H. Summary of the Earth orientation parameters prediction comparison campaign. EGU General Assembly 2008, EGU abstract: EGU2008-A-00595

    Google Scholar 

  8. Kalarus M, Schch H, Kozek W, et al. Achievements of Earth orientation parameters prediction comparison campaign. J Geodesy, 2010, 84: 587–596

    Article  Google Scholar 

  9. Freedman A P, Steppe J A, Dickey J O, et al. The short-term predic tion of universal time and length of day using atmospheric angular momentum. J Geophys Res, 1994, 99: 6981–6996

    Article  Google Scholar 

  10. Gross R S, Eubanks T M, Steppe J A, et al. A Kalman filter-based approach to combining independent Earth orientation series. J Geodesy, 1998, 72: 215–235

    Article  Google Scholar 

  11. Chao B F. Predictability of the Earth’s polar motion. J Geodesy, 1985, 59: 81–93

    Google Scholar 

  12. Kosek W. Future improvements in EOP prediction. In: Kenyon S, Pacino M C, Marti U, eds. Proceedings of the 2009 IAG Symposium. Geodesy for Planet Earth. Heildberg: Springer, 2009. 513

    Google Scholar 

  13. Kosek W. Causes of prediction errors of pole coordinates data. In: Proceedings of the 6th Orlov’s Conference “The Study of the Earth as a Planet by Methods of Geophysics, Geodesy and Astronomy”, June 22–24, 2009. MAO NAS of Ukraine, Kiev, Ukraine. 96–103

  14. Schuh H, Ulrich M, Egger D, et al. Prediction of Earth orientation parameters by artificial neural networks. J Geodesy, 2002, 76: 247–258

    Article  Google Scholar 

  15. Zheng D W, Chen Z G. Prediction of the Earth rotation parameters. Ann Shanghai Astron Observ, 1982, 4: 116–120

    Google Scholar 

  16. Wang Q J. The earth rotation changes prediction based on neural network technology. Ph. D. Dissertation. Shanghai: Shanghai Astronomical Observatory, 2007

    Google Scholar 

  17. Yang Y X, Cui X Q. Adaptively robust filter with multi adaptive factors. Surv Rev, 2008, 40: 260–270

    Article  Google Scholar 

  18. Xu X Q, Zhou Y H. The research of the earth orientation parameters high accuracy prediction method. J Flight Contr, 2010, 29: 70–76

    Google Scholar 

  19. Xu J Y. GM (1,1) model based on intercept correction and application to polar motion prediction. J Geodesy Geodyn, 2010, 30: 88–91

    Google Scholar 

  20. Wang X Z, Tao B Z, Qiu W N, et al. Advanced Surveying Adjustment. Beijing: Surveying and Mapping Press, 2006. 41–43

    Google Scholar 

  21. Box G E P, Jenkins G M. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day, 1970

    Google Scholar 

  22. Yang S Z, Wu Y, Xuan J P, et al. Time Series Analysis in Engineering Application. Wuhan: Huazhong University of Science and Technology Press, 2007. 254–275

    Google Scholar 

  23. Zhang S W, Lei Y J, Feng Y Q, et al. Application of MATLAB in Time Series Analysis. Xi’an: Xi’an Electronic Science and Technology University Press, 2007. 130–133

    Google Scholar 

  24. Chen Z S. Statistical Information Processing Based on to matlab7.0. Changsha: Hunan Science and Technology Press, 2005. 227–245

    Google Scholar 

  25. Giannakis G B, Mendel J M. Cumulant-based order determination of non-Gaussian ARMA models. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38: 1411–1423, doi: 10.1109/29.57576

    Article  Google Scholar 

  26. Qi C J. Algorithm Analysis and Application of Digital Signal Processing. Beijing: China Machine Press, 2005. 183–197

    Google Scholar 

  27. Turner D S. The role of judgement in macroeconomic forecasting. J Forecast, 1990, 9: 315–345

    Article  Google Scholar 

  28. Wallis K F, Whitley J D. Sources of error in forecasts and expectations: UK economic models. J Forecast, 1991, 10: 231–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiBin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Yue, S. & Chen, P. A new LS+AR model with additional error correction for polar motion forecast. Sci. China Earth Sci. 56, 818–828 (2013). https://doi.org/10.1007/s11430-012-4572-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4572-3

Keywords

Navigation