Science China Earth Sciences

, Volume 56, Issue 5, pp 818–828 | Cite as

A new LS+AR model with additional error correction for polar motion forecast

Research Paper


Polar motion depicts the slow changes in the locations of the poles due to the earth’s internal instantaneous axis of rotation. The LS+AR model is recognized as one of the best models for polar motion prediction. Through statistical analysis of the time series of the LS+AR model’s short-term prediction residuals, we found that there is a good correlation of model prediction residuals between adjacent terms. These indicate that the preceding model prediction residuals and experiential adjustment matrixes can be used to correct the next prediction results, thereby forming a new LS+AR model with additional error correction that applies to polar motion prediction. Simulated predictions using this new model revealed that the proposed method can improve the accuracy and reliability of polar motion prediction. In fact, the accuracies of ultra short-term and short-term predictions using the new model were equal to the international best level at present.


polar motion forecast LS+AR model correlation coefficient additional error correction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akulenko L D, Kumakshev S A, Markov Y G. Motion of the Earth’s pole. Dokl Phys, 2002, 47: 78–84CrossRefGoogle Scholar
  2. 2.
    Akulenko L D, Kumakshev S A, Markov Y G, et al. A model for the polar motion of the deformable Earth adequate for astrometric data. Astron Rep, 2002, 46: 74–82CrossRefGoogle Scholar
  3. 3.
    Akulenko L D, Kumakshev S A, Markov Y G, et al. Forecasting the polar motions of the deformable Earth. Astron Rep, 2002, 46: 858–866CrossRefGoogle Scholar
  4. 4.
    Akyilmaz O, Kutterer H. Prediction of Earth rotation parameters by fuzzy inference systems. J Geodesy, 2004, 78: 82–93CrossRefGoogle Scholar
  5. 5.
    Kalarus M, Kosek W, Schuh H. Current results of the Earth orientation parameters prediction comparison campaign. In: Capitaine N, ed. Proceedings of the journées 2007, systèmes deréférence spatio-temporels “The celestial reference frame for thefuture”. Observatoire de Paris Systemes de Référence Temps-Espace UMR8630/CNRS, Paris, France. 159–162Google Scholar
  6. 6.
    Kalarus M, Kosek W, Schuh H. Current results of the Earth orientation parameters prediction comparison campaign. In: AGU Fallmeeting 2007, San Francisco, California, Earth’s Reference System and Rotation: Geodesy and geoscience III posters. Eos Trans AGU 88(52), Fall Meet Suppl, Abstract No. G 43C-1480Google Scholar
  7. 7.
    Kalarus M, Kosek W, Schuh H. Summary of the Earth orientation parameters prediction comparison campaign. EGU General Assembly 2008, EGU abstract: EGU2008-A-00595Google Scholar
  8. 8.
    Kalarus M, Schch H, Kozek W, et al. Achievements of Earth orientation parameters prediction comparison campaign. J Geodesy, 2010, 84: 587–596CrossRefGoogle Scholar
  9. 9.
    Freedman A P, Steppe J A, Dickey J O, et al. The short-term predic tion of universal time and length of day using atmospheric angular momentum. J Geophys Res, 1994, 99: 6981–6996CrossRefGoogle Scholar
  10. 10.
    Gross R S, Eubanks T M, Steppe J A, et al. A Kalman filter-based approach to combining independent Earth orientation series. J Geodesy, 1998, 72: 215–235CrossRefGoogle Scholar
  11. 11.
    Chao B F. Predictability of the Earth’s polar motion. J Geodesy, 1985, 59: 81–93Google Scholar
  12. 12.
    Kosek W. Future improvements in EOP prediction. In: Kenyon S, Pacino M C, Marti U, eds. Proceedings of the 2009 IAG Symposium. Geodesy for Planet Earth. Heildberg: Springer, 2009. 513Google Scholar
  13. 13.
    Kosek W. Causes of prediction errors of pole coordinates data. In: Proceedings of the 6th Orlov’s Conference “The Study of the Earth as a Planet by Methods of Geophysics, Geodesy and Astronomy”, June 22–24, 2009. MAO NAS of Ukraine, Kiev, Ukraine. 96–103Google Scholar
  14. 14.
    Schuh H, Ulrich M, Egger D, et al. Prediction of Earth orientation parameters by artificial neural networks. J Geodesy, 2002, 76: 247–258CrossRefGoogle Scholar
  15. 15.
    Zheng D W, Chen Z G. Prediction of the Earth rotation parameters. Ann Shanghai Astron Observ, 1982, 4: 116–120Google Scholar
  16. 16.
    Wang Q J. The earth rotation changes prediction based on neural network technology. Ph. D. Dissertation. Shanghai: Shanghai Astronomical Observatory, 2007Google Scholar
  17. 17.
    Yang Y X, Cui X Q. Adaptively robust filter with multi adaptive factors. Surv Rev, 2008, 40: 260–270CrossRefGoogle Scholar
  18. 18.
    Xu X Q, Zhou Y H. The research of the earth orientation parameters high accuracy prediction method. J Flight Contr, 2010, 29: 70–76Google Scholar
  19. 19.
    Xu J Y. GM (1,1) model based on intercept correction and application to polar motion prediction. J Geodesy Geodyn, 2010, 30: 88–91Google Scholar
  20. 20.
    Wang X Z, Tao B Z, Qiu W N, et al. Advanced Surveying Adjustment. Beijing: Surveying and Mapping Press, 2006. 41–43Google Scholar
  21. 21.
    Box G E P, Jenkins G M. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day, 1970Google Scholar
  22. 22.
    Yang S Z, Wu Y, Xuan J P, et al. Time Series Analysis in Engineering Application. Wuhan: Huazhong University of Science and Technology Press, 2007. 254–275Google Scholar
  23. 23.
    Zhang S W, Lei Y J, Feng Y Q, et al. Application of MATLAB in Time Series Analysis. Xi’an: Xi’an Electronic Science and Technology University Press, 2007. 130–133Google Scholar
  24. 24.
    Chen Z S. Statistical Information Processing Based on to matlab7.0. Changsha: Hunan Science and Technology Press, 2005. 227–245Google Scholar
  25. 25.
    Giannakis G B, Mendel J M. Cumulant-based order determination of non-Gaussian ARMA models. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38: 1411–1423, doi: 10.1109/29.57576CrossRefGoogle Scholar
  26. 26.
    Qi C J. Algorithm Analysis and Application of Digital Signal Processing. Beijing: China Machine Press, 2005. 183–197Google Scholar
  27. 27.
    Turner D S. The role of judgement in macroeconomic forecasting. J Forecast, 1990, 9: 315–345CrossRefGoogle Scholar
  28. 28.
    Wallis K F, Whitley J D. Sources of error in forecasts and expectations: UK economic models. J Forecast, 1991, 10: 231–253CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina

Personalised recommendations