Advertisement

Science China Earth Sciences

, Volume 55, Issue 10, pp 1565–1587 | Cite as

Destruction of the North China Craton

  • RiXiang ZhuEmail author
  • YiGang Xu
  • Guang Zhu
  • HongFu Zhang
  • QunKe Xia
  • TianYu Zheng
Review Progress of Projects Supported by NSFC

Abstract

A National Science Foundation of China (NSFC) major research project, Destruction of the North China Craton (NCC), has been carried out in the past few years by Chinese scientists through an in-depth and systematic observations, experiments and theoretical analyses, with an emphasis on the spatio-temporal distribution of the NCC destruction, the structure of deep earth and shallow geological records of the craton evolution, the mechanism and dynamics of the craton destruction. From this work the following conclusions can be drawn: (1) Significant spatial heterogeneity exists in the NCC lithospheric thickness and crustal structure, which constrains the scope of the NCC destruction. (2) The nature of the Paleozoic, Mesozoic and Cenozoic sub-continental lithospheric mantle (CLM) underneath the NCC is characterized in detail. In terms of water content, the late Mesozoic CLM was rich in water, but Cenozoic CLM was highly water deficient. (3) The correlation between magmatism and surface geological response confirms that the geological and tectonic evolution is governed by cratonic destruction processes. (4) Pacific subduction is the main dynamic factor that triggered the destruction of the NCC, which highlights the role of cratonic destruction in plate tectonics.

Keywords

NSFC major research project research progress craton destruction North China Craton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wong W H. Crustal movements and igneous activities in eastern China since Mesozoic time. Acta Geol Sin, 1927, 6: 9–37Google Scholar
  2. 2.
    Chen G D. Examples of “activated region” in Chinese Plateform with special reference to the “Cathaysia” problem (in Chinese with English abstract). Acta Geol Sin, 1956, 36: 239–272Google Scholar
  3. 3.
    Xu Z. Etude tectonique et microtectonique de la chaine Poleozoique et triasique des Quilings (Chine). These Dedoctorat. Univ Sci Tech Languedoc, Montpellier, 1987Google Scholar
  4. 4.
    Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China (in Chinese with English abstract). Geotecton Metal, 1992, 16: 171–180Google Scholar
  5. 5.
    Menzies M, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1–21CrossRefGoogle Scholar
  6. 6.
    Wu F Y, Xu Y G, Gao S, et al. Controversial on studies of the lithospheric thinning and craton destruction of North China (in Chinese with English abstract). Acta Petrol Sin, 2008, 24: 1145–1174Google Scholar
  7. 7.
    Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North China Craton. Chin Sci Bull, 2009, 54: 3367–3378, doi: 10.1007/s11434-009-0395-9CrossRefGoogle Scholar
  8. 8.
    Xu Y G, Li H Y, Pang C J, et al. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 2009, 54: 3379–3396CrossRefGoogle Scholar
  9. 9.
    Zhang H F. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull, 2009, 54: 3417–3437, doi: 10.1007/s11434-009-0307-zCrossRefGoogle Scholar
  10. 10.
    Zheng J P. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin Sci Bull, 2009, 54: 3397–3416CrossRefGoogle Scholar
  11. 11.
    Zhu R X, Zheng T Y. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 2009, 54: 3354–3366CrossRefGoogle Scholar
  12. 12.
    Zhu R X, Chen L, Wu F Y, et al. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 2011, 54: 789–797, doi: 10.1007/s11430-011-4203-4CrossRefGoogle Scholar
  13. 13.
    Chen L, Wen L, Zheng T Y. A wave equation migration method for receiver function imaging: 1. Theory. J Geophys Res, 2005, 110: B11309, doi: 10.1029/2005JB003665CrossRefGoogle Scholar
  14. 14.
    Chen L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys Earth Planet Inter, 2009, 173: 216–227CrossRefGoogle Scholar
  15. 15.
    Chen L, Cheng C, Wei Z G. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet Sci Lett, 2009, 286: 171–183CrossRefGoogle Scholar
  16. 16.
    Chen L, Wang T, Zhao L, et al. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 2008, 267: 56–68CrossRefGoogle Scholar
  17. 17.
    Chen L, Zheng T Y, Xu W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111: B09312, doi: 10.1029/2005JB003974CrossRefGoogle Scholar
  18. 18.
    Zheng T Y, Chen L, Zhao L, et al. Crust-mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust. Phys Earth Planet Inter, 2006, 159: 43–58CrossRefGoogle Scholar
  19. 19.
    Zheng T Y, Chen L, Zhao L, et al. Crustal structure across the Yanshan belt at the northern margin of the North China Craton. Phys Earth Planet Inter, 2007, 161: 36–49CrossRefGoogle Scholar
  20. 20.
    Zheng T Y, Zhao L, Zhu R X. New evidence from seismic imaging for subduction during assembly of the North China Craton. Geology, 2009, 37: 395–398CrossRefGoogle Scholar
  21. 21.
    Zheng T Y, Zhao L, Xu W W, et al. Insight into modification of North China Craton from seismological study in the Shandong Province. Geophys Res Lett, 2008, 35: L22305, doi: 10.1029/2008GL035661CrossRefGoogle Scholar
  22. 22.
    Zheng T Y, Zhao L, Zhu R X. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary. Geophys Res Lett, 2008, 35: L08303, doi: 10.1029/2008GL033439CrossRefGoogle Scholar
  23. 23.
    Zheng T Y, Zhu R X, Zhao L, et al. Intra-lithospheric mantle structures recorded continental subduction. J Geophys Res, 2012, 117: B03308, doi: 10.1029/2011JB008873CrossRefGoogle Scholar
  24. 24.
    Zhao L, Allen R, Zheng T Y, et al. High-resolution body-wave tomography models of the upper mantle beneath eastern China and the adjacent areas. Geochem Geophys Geosyst, 2012, 13: Q06007, doi: 10.1029/2012GC004119CrossRefGoogle Scholar
  25. 25.
    Zhao L, Allen R M, Zheng T Y, et al. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China. Geophys Res Lett, 2009, 36: L17306, doi: 10.1029/2009GL039781CrossRefGoogle Scholar
  26. 26.
    Jiang M M, Ai Y, Chen L, et al. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography. Gondwana Res, 2012, doi: 10.1016/j.gr.2012.06.018Google Scholar
  27. 27.
    Zhao L, Xue M. Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy. Geochem Geophys Geosyst, 2010, 11: Q07010, doi: 10.1029/2010GC003068CrossRefGoogle Scholar
  28. 28.
    Zhao L, Zheng T Y. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophys Res Lett, 2005, 32: L10309, doi: 10.1029/2005GL022585CrossRefGoogle Scholar
  29. 29.
    Zhao L, Zheng T Y. Complex upper-mantle deformation beneath the North China Craton: Implications for lithospheric thinning. Geophys J Int, 2007, 170: 1095–1099CrossRefGoogle Scholar
  30. 30.
    Zhao L, Zheng T Y, Chen L, et al. Shear wave splitting in eastern and central China: Implications for upper mantle deformation beneath continental margin. Phys Earth Planet Inter, 2007, 162: 73–84CrossRefGoogle Scholar
  31. 31.
    Zhao L, Zheng T Y, Lü G. Insight into craton evolution: Constraints from shear wave splitting in the North China Craton. Phys Earth Planet Inter, 2008, 168: 153–162CrossRefGoogle Scholar
  32. 32.
    Zhao L, Zheng T Y, Lü G, et al. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: Constraints from new SKS wave splitting measurements. Geophys J Int, 2011, 187: 1027–1037CrossRefGoogle Scholar
  33. 33.
    Ai Y, Zheng T Y. The upper mantle discontinuity structure beneath eastern China. Geophys Res Lett, 2003, 30: 2089, doi: 10.1029/2003GL017678CrossRefGoogle Scholar
  34. 34.
    Ai Y, Zheng T Y, Xu W, et al. Small scale hot upwelling near the North Yellow Sea of eastern China. Geophys Res Lett, 2008, 35: L20305, doi: 10.1029/2008GL035269CrossRefGoogle Scholar
  35. 35.
    Chen L, Ai Y. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res, 2009, 114: B06307, doi: 10.1029/2008JB006221CrossRefGoogle Scholar
  36. 36.
    Chen L, Zheng T Y, Xu W. Receiver function migration image of the deep structure in the Bohai Bay Basin, eastern China. Geophys Res Lett, 2006, 33: L20307, doi: 10.1029/2006GL027593CrossRefGoogle Scholar
  37. 37.
    Xu W W, Zheng T Y, Zhao L. Mantle dynamics of the reactivating North China Craton: Constraints from the topographies of the 410-km and 660-km discontinuities. Sci China Earth Sci, 2011, 54: 881–887, doi: 10.1007/s11430-010-4163-0CrossRefGoogle Scholar
  38. 38.
    Griffin W L, Zhang A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, 1998. 107–126Google Scholar
  39. 39.
    Xiao Y, Zhang H F, Fan W M, et al. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 2010, 117: 229–246CrossRefGoogle Scholar
  40. 40.
    Liu J, Rudnick R L, Walker R J, et al. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochim Cosmochim Acta, 2011, 75: 3881–3902CrossRefGoogle Scholar
  41. 41.
    Tang Y J, Zhang H F, Ying J F, et al. Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization. Gondwana Res, 2012, doi: 10.1016/j.gr.2012.1001.1006Google Scholar
  42. 42.
    Zhang H F, Deloule E, Tang Y J, et al. Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contrib Mineral Petrol, 2010, 160: 261–277CrossRefGoogle Scholar
  43. 43.
    Zheng J P, O’Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 2001, 57: 43–66CrossRefGoogle Scholar
  44. 44.
    Zhang H F, Goldstein S, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 2008, 155: 271–293CrossRefGoogle Scholar
  45. 45.
    Zhang H F, Goldstein S L, Zhou X H, et al. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: Further Os-Sr-Nd isotopic constraints. J Geol Soc London, 2009, 166: 249–259CrossRefGoogle Scholar
  46. 46.
    Xiao Y, Zhang H F. Effects of melt percolation on platinum group elements and Re-Os systematics of peridotites from the Tan-Lu fault zone, eastern North China Craton. J Geol Soc London, 2011, 168: 1201–1214CrossRefGoogle Scholar
  47. 47.
    Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 2002, 198: 307–322CrossRefGoogle Scholar
  48. 48.
    Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 2006, 70: 5013–5034CrossRefGoogle Scholar
  49. 49.
    Zhang H F, Ying J F, Santosh M, et al. Episodic growth of Precambrian lower crust beneath the North China Craton: A synthesis. Precambrian Res, 2012, doi: 10.1016/j.precamres.2011.1004.1006Google Scholar
  50. 50.
    Zhang H F, Sun M, Zhou M F, et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: Evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol Mag, 2004, 141: 55–62CrossRefGoogle Scholar
  51. 51.
    Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruc tion beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241–254CrossRefGoogle Scholar
  52. 52.
    Zhang H F, Nakamura E, Kobayashi K, et al. Recycled crustal melt injection into lithospheric mantle: Implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci, 2010, 99: 1167–1186CrossRefGoogle Scholar
  53. 53.
    Xu Y G, Ma J L, Huang X L, et al. Early Cretaceous gabbroic complex from Yinan, Shandong Province: Petrogenesis and mantle domains beneath the North China Craton. Int J Earth Sci, 2004, 93: 1025–1041CrossRefGoogle Scholar
  54. 54.
    Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41–53CrossRefGoogle Scholar
  55. 55.
    Xu W, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123–137CrossRefGoogle Scholar
  56. 56.
    Xu W, Yang D, Gao S, et al. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem Geol, 2010, 270: 257–273CrossRefGoogle Scholar
  57. 57.
    Ying J F, Zhang H F, Tang Y J. Lower crustal xenoliths from Junan, Shandong Province and their bearing on the nature of the lower crust beneath the North China Craton. Lithos, 2010, 119: 363–376CrossRefGoogle Scholar
  58. 58.
    Zhang H F. Destruction of ancient lower crust through magma underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf isotopic evidence from granulite xenoliths. Gondwana Res, 2012, 21: 281–292CrossRefGoogle Scholar
  59. 59.
    Liu S A, Li S, Guo S, et al. The Cretaceous adakitic-basaltic-granitic magma sequence on south-eastern margin of the North China Craton: Implications for lithospheric thinning mechanism. Lithos, 2012, 134-135: 163–178CrossRefGoogle Scholar
  60. 60.
    Ying J F, Zhang H F, Kita N, et al. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 2006, 244: 622–638CrossRefGoogle Scholar
  61. 61.
    Ying J F, Zhang H F, Tang Y J. Zoned olivine xenocrysts in a late Mesozoic gabbro from the southern Taihang Mountains: Implications for old lithospheric mantle beneath the central North China Craton. Geol Mag, 2010, 147: 161–170CrossRefGoogle Scholar
  62. 62.
    Ying J F, Zhang H F, Tang Y J. Crust-mantle interaction in the central North China Craton during the Mesozoic: Evidence from zircon U-Pb chronology, Hf isotope and geochemistry of syenitic-monzonitic intrusions from Shanxi Province. Lithos, 2011, 125: 449–462CrossRefGoogle Scholar
  63. 63.
    Zhang H F, Yang Y H, Santosh M, et al. Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton. Gondwana Res, 2012, doi: 10.1016/j.gr.2011.1008.1011Google Scholar
  64. 64.
    Zhang H F, Zhu R X, Santosh M, et al. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: Implications for craton destruction. Gondwana Res, 2012, doi: 10.1016/j.gr.2011.1012.1006Google Scholar
  65. 65.
    Zheng J P, Griffin W L, O’Reilly S Y, et al. Continental collision and accretion recorded in the deep lithosphere of central China. Earth Planet Sci Lett, 2008, 269: 497–507CrossRefGoogle Scholar
  66. 66.
    Hu S, He L, Wang J. Heat flow in the continental area of China: A new data set. Earth Planet Sci Lett, 2000, 179: 407–419CrossRefGoogle Scholar
  67. 67.
    Xu Y G, Blusztajn J, Ma J L, et al. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China Craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, 2008, 102: 25–42CrossRefGoogle Scholar
  68. 68.
    Tang Y J, Zhang H F, Ying J F, et al. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth-Sci Rev, 2012, submitted revisionGoogle Scholar
  69. 69.
    Tang Y J, Zhang H F, Nakamura E, et al. Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol, 2011, 161: 845–861CrossRefGoogle Scholar
  70. 70.
    Tang Y J, Zhang H F, Deloule E, et al. Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos, 2012, doi: 10.1016/j.lithos.2011.12.001Google Scholar
  71. 71.
    Yang W, Teng F Z, Zhang H F. Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China Craton. Earth Planet Sci Lett, 2009, 288: 475–482CrossRefGoogle Scholar
  72. 72.
    Zhao X, Zhang H, Zhu X, et al. Iron isotope variations in spinel peridotite xenoliths from North China Craton: Implications for mantle metasomatism. Contrib Mineral Petrol, 2010, 160: 1–14CrossRefGoogle Scholar
  73. 73.
    Zhao X, Zhang H, Zhu X, et al. Iron isotope evidence for multistage melt-peridotite interactions in the lithospheric mantle of eastern China. Chem Geol, 2012, 292–293: 127–139CrossRefGoogle Scholar
  74. 74.
    Zhang H F, Sun Y L, Tang Y J, et al. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton: Petrology, geochemistry and Sr, Nd and Re isotopes. Lithos, 2012, doi: 10.1016/j.lithos.2012.1001.1027Google Scholar
  75. 75.
    Peslier A H, Woodland A B, Bell D R, et al. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 2010, 467: 78–81CrossRefGoogle Scholar
  76. 76.
    Xia Q, Liu J, Liu S, et al. High water content in Mesozoic primitive basalts of the North China Craton and implications for the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 2012, under reviewGoogle Scholar
  77. 77.
    O’Leary J A, Gaetani G A, Hauri E H. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett, 2010, 297: 111–120CrossRefGoogle Scholar
  78. 78.
    Michael P J. The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism. Geochim Cosmochim Acta, 1988, 52: 555–566CrossRefGoogle Scholar
  79. 79.
    Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett, 1996, 137: 45–55CrossRefGoogle Scholar
  80. 80.
    Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 2002, 419: 451–455CrossRefGoogle Scholar
  81. 81.
    Simons K, Dixon J, Schilling J G, et al. Volatiles in basaltic glasses from the Easter-Salasy Gomez Seamount Chain and Easter Microplate: Implications for geochemical cycling of volatile elements. Geochem Geophys Geosyst, 2002, 3: 1039, doi: 10.1029/2001GC000173CrossRefGoogle Scholar
  82. 82.
    Bell D R, Rossman G R. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 1992, 255: 1391–1397CrossRefGoogle Scholar
  83. 83.
    Grant K, Ingrin J, Lorand J, et al. Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol, 2007, 154: 15–34CrossRefGoogle Scholar
  84. 84.
    Windley B F, Maruyama S, Xiao W J. Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 2010, 310: 1250–1293CrossRefGoogle Scholar
  85. 85.
    Xia Q K, Hao Y T, Li P, et al. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 2010, 115: B07207, doi: 10.1029/2009JB006694CrossRefGoogle Scholar
  86. 86.
    Xia Q K, Hao Y T, Liu S C, et al. Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: Peridotite xenolith constraints. Gondwana Res, 2012, doi: 10.1016/j.gr.2012.01.010Google Scholar
  87. 87.
    Li Z X, Lee C T A, Peslier A H, et al. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res, 2008, 113: B09210, doi: 10.1029/2007JB005540CrossRefGoogle Scholar
  88. 88.
    Peslier A H, Luhr J F, Post J. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett, 2002, 201: 69–86CrossRefGoogle Scholar
  89. 89.
    Sundvall R, Stalder R. Water in upper mantle pyroxene megacrysts and xenocrysts: A survey study. Am Mineral, 2011, 96: 1215–1227CrossRefGoogle Scholar
  90. 90.
    Zhai M G. Cratonization and the Ancient North China Continent: A summary and review. Sci China Earth Sci, 2011, 54: 1110–1120, doi: 10.1007/s11430-011-4250-xCrossRefGoogle Scholar
  91. 91.
    Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 2003, 22: 1069, doi: 10.1029/2002TC001484CrossRefGoogle Scholar
  92. 92.
    Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 1999, 306: 33–56CrossRefGoogle Scholar
  93. 93.
    Zhang C H, Li C M, Deng H L, et al. Mesozoic contraction deformation in the Yanshan and northern Taihang mountains and its implications to the destruction of the North China Craton. Sci China Earth Sci, 2011, 54: 798–822, doi: 10.1007/s11430-011-4180-7CrossRefGoogle Scholar
  94. 94.
    Jian P, Liu D, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 2010, 118: 169–190CrossRefGoogle Scholar
  95. 95.
    Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 2006, 246: 336–352CrossRefGoogle Scholar
  96. 96.
    Zhu G, Liu G, Niu M, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. Int J Earth Sci, 2009, 98: 135–155CrossRefGoogle Scholar
  97. 97.
    Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Isl Arc, 1997, 6: 121–142CrossRefGoogle Scholar
  98. 98.
    Xu J, Zhu G, Tong W, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northwest of the Pacific Ocean. Tectonophysics, 1987, 134: 273–310CrossRefGoogle Scholar
  99. 99.
    Zhu G, Niu M, Xie C, et al. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin. Anglais, 2010, 118: 277–293Google Scholar
  100. 100.
    Wang Y. The onset of the Tan-Lu fault movement in eastern China: Constraints from zircon (SHRIMP) and 40Ar/39Ar dating. Terra Nova, 2006, 18: 423–431CrossRefGoogle Scholar
  101. 101.
    Zhu G, Wang Y, Liu G, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. J Struct Geol, 2005, 27: 1379–1398CrossRefGoogle Scholar
  102. 102.
    Zhu G, Hu Z Q, Chen Y, et al. Evolution of Early Cretaceous extensional basins in the eastern North China craton and its implications to the craton destruction (in Chinese with English abstract). Geol Bull China, 2008, 27: 1594–1604Google Scholar
  103. 103.
    Liu J, Zhao Y, Liu X M. Age of the Tiaojishan Formation volcanics in the Chengde Basin northern Hebei Province (in Chinese with English abstract). Acta Petrol Sin, 2006, 22: 2617–2630Google Scholar
  104. 104.
    Gao S, Rudnick R, Yuan H, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892–897CrossRefGoogle Scholar
  105. 105.
    Zhang X H, Mao Q, Zhang H F, et al. A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China Craton: Age, origin and tectonic significance. Geol Mag, 2008, 145: 305–320CrossRefGoogle Scholar
  106. 106.
    Yang D B, Xu W L, Wang Q H, et al. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution of the eastern North China Craton. Lithos, 2010, 114: 200–216CrossRefGoogle Scholar
  107. 107.
    Jiang Y H, Jiang S Y, Ling H F, et al. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Miner Petrol, 2010, 100: 127–151CrossRefGoogle Scholar
  108. 108.
    Charles N, Gumiaux C, Augier R, et al. Metamorphic Core Complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China). J Asian Earth Sci, 2011, 40: 261–278CrossRefGoogle Scholar
  109. 109.
    Zhang B L, Zhu G, Jiang D Z et al. Evolution of the Yiwulüshan metamorphic core complex and late jurassic extensional event in the Western Liaoning Province (in Chinese with English abstract). Geol Rev, 2011, 57: 229–798Google Scholar
  110. 110.
    Davis G A, Qian X L, Zheng Y D, et al. Mesozoic deformation and plutonism in the Yunmeng Shan: A Chinese metamorphic core complex north of Beijing, China. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. New York: Cambridge University Press, 1996. 253–280Google Scholar
  111. 111.
    Darby B J, Davis G A, Zhang X H, et al. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, Northwest China. Earth Sci Frontiers, 2004, 11: 145–155Google Scholar
  112. 112.
    Lin W, Faure M, Monié P, et al. Mesozoic extensional tectonics in Eastern Asia: The south Liaodong Peninsula Metamorphic Core Complex (NE China). J Geol, 2008, 116: 134–154CrossRefGoogle Scholar
  113. 113.
    Lin W, Monié P, Faure M, et al. Cooling paths of the NE China crust during the Mesozoic extensional tectonics: Example from the south-Liaodong peninsula metamorphic core complex. J Asian Earth Sci, 2011, 42: 1048–1065CrossRefGoogle Scholar
  114. 114.
    Liu J, Davis G A, Lin Z, et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 2005, 407: 65–80CrossRefGoogle Scholar
  115. 115.
    Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geol Soc Am Bull, 2007, 119: 1405–1414CrossRefGoogle Scholar
  116. 116.
    Liu J L, Ji M, Shen L, et al. Early Cretaceous extensional structures in the Liaodong Peninsula: Structural associations, geochronological constraints and regional tectonic implications. Sci China Earth Sci, 2011, 54: 823–842, doi: 10.1007/s11430-011-4189-yCrossRefGoogle Scholar
  117. 117.
    Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 2012, 22: 86–103CrossRefGoogle Scholar
  118. 118.
    Lin W, Wang Q C, Wang J, et al. Late Mesozoic extensional tectonics of the Liaodong Peninsula massif: Response of crust to continental lithosphere destruction of the North China Craton. Sci China Earth Sci, 2011, 54: 843–857, doi: 10.1007/s11430-011-4190-5CrossRefGoogle Scholar
  119. 119.
    Chen Y, Zhu G, Hu Z Q, et al. Temporal-spatial changes of tectonic subsidence for Cretaceous-Paleogene basins in the eastern North China Craton and their relation with the craton destruction (in Chinese with English abstract). Chin J Geol, 2009, 44: 836–854Google Scholar
  120. 120.
    Qi J F, Zhou X H, Deng R L, et al. Structural characteristics of the Tan-Lu Fault Zone in Cenozoic basins offshore the Bohai Sea. Sci China Ser D-Earth Sci, 2008, 51(Suppl 2): 20–31CrossRefGoogle Scholar
  121. 121.
    Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 2003, 67: 4373–4387CrossRefGoogle Scholar
  122. 122.
    Zheng Y F, Wu F Y. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 2009, 54: 3347–3353CrossRefGoogle Scholar
  123. 123.
    Liu M, Cui X, Liu F. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision? Tectonophysics, 2004, 393: 29–42CrossRefGoogle Scholar
  124. 124.
    Menzies M, Fan W, Zhang M. Palaeozoic and Cenozoic lithoprobe and the loss of >120 km of Archean lithosphere, Sino-Korean Craton, China. In: Prichard M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonic. Geol Soc Special Publ, 1993. 71–81Google Scholar
  125. 125.
    Wilde S A, Zhou X, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China Craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31: 817–820CrossRefGoogle Scholar
  126. 126.
    Deng J F, Mo X X, Zhao H L, et al., Lithosphere root /de-roting and activation of the east China continent (in Chinese with English abstract). Geosciences, 1994, 8: 349–356Google Scholar
  127. 127.
    Menzies M, Xu Y. Geodynamics of the North China Craton. In: Flower M, Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington DC: Am Geophy Union, 1998. 155–165CrossRefGoogle Scholar
  128. 128.
    Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chem Geol, 2008, 247: 282–304CrossRefGoogle Scholar
  129. 129.
    Wu F Y, Sun D Y, The Mesozoic magmatism and lithospheric thinning in eastern China (in Chinese with English abstract). J Chang Chun Univ Sci Tech, 1999, 29: 313–318Google Scholar
  130. 130.
    Wu F Y, Sun D Y, Zhang G L, et al. Deep Geodynamics of Yanshain Movement (in Chinese with English abstract). Geol J China Univ, 2000, 6: 380–388Google Scholar
  131. 131.
    Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phy Chem Earth (A), 2001, 26: 747–757CrossRefGoogle Scholar
  132. 132.
    Xu Y G. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 2007, 96: 281–298CrossRefGoogle Scholar
  133. 133.
    Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China. Geol J China Univ, 2005, 11: 9–46Google Scholar
  134. 134.
    Zheng J P, Griffin W L, O’Reilly S Y, et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath Eastern China. J Petrol, 2006, 47: 2233–2256CrossRefGoogle Scholar
  135. 135.
    Zheng J P, Griffin W L, O’Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203–5225CrossRefGoogle Scholar
  136. 136.
    Zhang J J, Zheng Y F, Zhao Z F. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 2009, 110: 305–326CrossRefGoogle Scholar
  137. 137.
    Li H Y, He B, Xu Y G, et al. U-Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: Insights into interactions of the North China Craton with surrounding plates. J Asian Earth Sci, 2010, 39: 335–346CrossRefGoogle Scholar
  138. 138.
    Xu W, Gao S, Wang Q, et al. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721–724CrossRefGoogle Scholar
  139. 139.
    Xu Y, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: Constraints from SHRIMP zircon UPb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 2004, 147: 750–767CrossRefGoogle Scholar
  140. 140.
    Yang Q L, Zhao Z F, Zheng Y F. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 2012, 146–147: 164–182CrossRefGoogle Scholar
  141. 141.
    Chen L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 2010, 120: 96–115CrossRefGoogle Scholar
  142. 142.
    Ren J, Tamaki K, Li S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 2002, 344: 175–205CrossRefGoogle Scholar
  143. 143.
    Liu J L, Guan H M, Ji M, et al. Late Mesozoic metamorphic core complexes: New constraints on lithosphere thinning in North China (in Chinese with English abstract). Prog Nat Sci, 2006, 16: 633–638CrossRefGoogle Scholar
  144. 144.
    Xu Y G, Chung S L, Ma J, et al. Contrasting Cenozoic lithospheric evolution and architecture in western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. J Geol, 2004, 112: 593–605CrossRefGoogle Scholar
  145. 145.
    Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103–119CrossRefGoogle Scholar
  146. 146.
    Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 2005, 221: 127–156CrossRefGoogle Scholar
  147. 147.
    Fukao Y, Obayashi M, Inoue H, et al. Subducting slabs stagnant in the Mantle Transition Zone. J Geophys Res, 1992, 97: 4809–4822CrossRefGoogle Scholar
  148. 148.
    Huang J L, Zhao D. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 2006, 111: B09305, doi: 10.1029/2005JB004066CrossRefGoogle Scholar
  149. 149.
    Li C, van der Hilst R D. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 2010, 115: B07308, doi: 10.1029/2009JB006882CrossRefGoogle Scholar
  150. 150.
    Zheng X, Cong B, Zhang W, et al. Petrochemistry of Cenozoic basaltic rocks in eastern China—Discussion. Sci Geol Sin, 1978, 3: 253–264Google Scholar
  151. 151.
    Wang Y, Zhao Z F, Zheng Y F, et al. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 2011, 125: 940–955CrossRefGoogle Scholar
  152. 152.
    Xu Z, Zhao Z F, Zheng Y F. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 2012, 146–147: 202–217CrossRefGoogle Scholar
  153. 153.
    Xu Y G, Zhang H H, Qiu H N, et al. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 2012, doi: 10.1016/j.chemgeo.2012.01.027Google Scholar
  154. 154.
    Zou H, Zindler A, Xu X, et al. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem Geol, 2000, 171: 33–47CrossRefGoogle Scholar
  155. 155.
    Qin X F. Geochronology and geochemistry of the Tertiary basalts from the Midanjiang-Mishan regions: Mantle source characteristics and its spatial-temporal evolution. Ph. D. dessertation. Beijing: Graduate School of Chinese Academy of Sciences, 2008. 125Google Scholar
  156. 156.
    Zindler A, Hart S. Chemical geodynamics. Annu Rev Earth Planet Sci, 1986, 14: 493–571CrossRefGoogle Scholar
  157. 157.
    Yu S Y, Xu Y G, Ma J L, et al. Remnants of oceanic lower crust in the subcontinental lithospheric mantle: Trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth Planet Sci Lett, 2010, 297: 413–422CrossRefGoogle Scholar
  158. 158.
    Xu Y G, Kuang Y S, Zhang H H. Recycled oceanic crust in the source of 100–40 Ma basalts in North China Craton: Evidence, provenance and significance. 2012, in preparationGoogle Scholar
  159. 159.
    Hofmann A W. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Carlson R W, ed. Treatise on Geochemistry. New York: Elsevier, 2004. 61–101Google Scholar
  160. 160.
    Karato S. Rheology of the upper mantle: A synthesis. Science, 1993, 260: 771–778CrossRefGoogle Scholar
  161. 161.
    Dixon J E, Dixon T H, Bell D R, et al. Lateral variation in upper mantle viscosity: Role of water. Earth Planet Sci Lett, 2004, 222: 451–467CrossRefGoogle Scholar
  162. 162.
    Hyndman R, Currie C, Mazzotti S. Sunduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 2005, 15: 4–10Google Scholar
  163. 163.
    Zheng Y F. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 2012, doi: 10.1016/j.chemgeo.2012.02.02.005Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • RiXiang Zhu
    • 1
    Email author
  • YiGang Xu
    • 2
  • Guang Zhu
    • 3
  • HongFu Zhang
    • 1
  • QunKe Xia
    • 4
  • TianYu Zheng
    • 1
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  3. 3.School of Resource and Environmental EngineeringHefei University of TechnologyHefeiChina
  4. 4.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations