Advertisement

Science China Earth Sciences

, Volume 55, Issue 7, pp 1043–1051 | Cite as

Current issues in high-resolution earth observation technology

  • DeRen Li
  • QingXi Tong
  • RongXing Li
  • JianYa Gong
  • LiangPei Zhang
Review

Abstract

This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China’s high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China’s high-resolution earth observation system from a “quantity” to “quality” change, from China to the world, from providing products to providing online service.

Keywords

high-resolution earth observation sensor networks precision processing of remote sensing images automatic interpretation of remote sensing images focus services for spatial information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li D R. Development prospect of photogrammetry and remote sensing. Geomatics Inf Sci Wuhan Univ, 2008, 33: 1211–1215Google Scholar
  2. 2.
    Li D R, Huang J H, Shao Z F. Design and implementation of service- oriented spatial information sharing framework for digital city. Geomatics Inf Sci Wuhan Univ, 2008, 33: 881–885Google Scholar
  3. 3.
    Li D R, Shao Z F. The intrinsic property of geo-informatics is service. Bull Surv Mapp, 2008, 5: 1–4CrossRefGoogle Scholar
  4. 4.
    Li D R. On geomatics in multi-discipline integration. Acta Geod Cartograph Sin, 2007, 36: 363–365Google Scholar
  5. 5.
    Li D R, Ma H C. The New Progress of Space Earth Observation Technology. Chinese Academy of Sciences High-tech Development Report (in Chinese). Beijing: Science Press, 2007Google Scholar
  6. 6.
    Li D R. Geo-spatial information science and it’s applications in land science. Chin J Nat, 2005, 27: 316–322Google Scholar
  7. 7.
    Li D R. On generalized and specialized spatial information grid. J Remote Sens, 2005, 9: 513–519Google Scholar
  8. 8.
    Li D R. Opportunities for geomatics. Geomatics Inf Sci Wuhan Univ, 2004, 29: 753–756Google Scholar
  9. 9.
    Li H F, Zhang L P, Shen H F. A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans Geosci Remote Sensing, 2011, doi: 10.1109/TGRS.2011.2178075Google Scholar
  10. 10.
    Pan J, Wang M, Li D R, et al. A robust Approach for Repairing Color Composite DMC Images. Photogramm Eng Remote Sens, 2009, 75: 201–210Google Scholar
  11. 11.
    Pan J, Wang M, Li D R, et al. Automatic generation of seamline network using area voronoi diagrams with overlap. IEEE Trans Geosci Remote Sensing, 2009, 47: 1737–1744CrossRefGoogle Scholar
  12. 12.
    Pan J, Wang M, Li D R, et al. Repair approach for DMC images based on hierarchical location using edge curve. Sci China Ser F-Inform Sci, 2009, 39: 742–750Google Scholar
  13. 13.
    Shen H F, Zeng C, Zhang L P. Recovering reflectance and radiance of AQUA MODIS band 6 based on within-class local fitting. IEEE J Sel Top Earth Appl, 2011, 4: 185–192CrossRefGoogle Scholar
  14. 14.
    Shen H F, Zhang L P. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans Geosci Remote Sensing, 2009, 47: 1492–1502CrossRefGoogle Scholar
  15. 15.
    Huang W, Zhang L P, Furumi S, et al. Topographic effects on estimating net primary productivity of green coniferous forest in complex terrain using Landsat data: A case study of Yoshino Mountain, Japan. Int J Remote Sens, 2010, 31: 2941–2957CrossRefGoogle Scholar
  16. 16.
    Liao M S, Wang T, Lu L J, et al. Reconstruction of DEMs from ERS-1/2 tandem data in mountainous area facilitated by SRTM data. IEEE Trans Geosci Remote Sensing, 2007, 45: 2325–2335CrossRefGoogle Scholar
  17. 17.
    Song X G, Li D R, Shan X J, et al. Correction of atmospheric effect in ASAR interferogram using GPS and MODIS data. Chin J Geophys, 2009, 52: 1457–1464Google Scholar
  18. 18.
    Song X G, Li D R, Shan X J, et al. Correction of atmospheric effect in repeat-pass InSAR measurements based on GPS and atmospheric transport model. Chin J Geophys, 2009, 52: 1156–1164Google Scholar
  19. 19.
    Shen H F, Ng M K, Li P X, et al. Superresolution reconstruction algorithm to MODIS remote sensing images. Comput J, 2009, 52: 90–100CrossRefGoogle Scholar
  20. 20.
    Wang Z, Ziou D, Armenakis C, et al. A comparative analysis of image fusion methods. IEEE Trans Geosci Remote Sensing, 2005, 43: 1391–1402CrossRefGoogle Scholar
  21. 21.
    Li D R, Zhang G, Jiang W S, et al. SPOT-5 HRS satellite imagery block adjustment without GCPS or with Single GCP. Geomatics Inf Sci Wuhan Univ, 2006, 31: 377–381Google Scholar
  22. 22.
    Zhang G, Li D R, Yuan X X, et al. The mapping accuracy of satellite imagery block adjustment. J Zhengzhou Inst Surv Map, 2006, 23: 239–241Google Scholar
  23. 23.
    Zhang G, Fei W B, Li Z, et al. Evaluation of the RPC model for spaceborne SAR imagery. Photogramm Eng Remote Sens, 2010, 76: 727–733Google Scholar
  24. 24.
    Zhang G, Qiang Q, et al. Application of RPC model in orthorectification of spaceborne SAR imagery. Photogramm Rec, 2012, 27: 94–110CrossRefGoogle Scholar
  25. 25.
    Zhang G, Fei W B, Li Z, et al., Evaluation of the RPC model as a replacement for the spaceborne InSAR phase equation. Photogramm Rec, 2011, 26: 325–338CrossRefGoogle Scholar
  26. 26.
    Zhang G, Li Z, Pan H B, et al. Orientation of spaceborne SAR stereo pairs employing the RPC adjustment model. IEEE Trans Geosci Remote Sensing, 2011, 49: 2782–2792CrossRefGoogle Scholar
  27. 27.
    Huang X, Zhang L P. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans Geosci Remote Sensing, 2008, 46: 4173–4185CrossRefGoogle Scholar
  28. 28.
    Su W, Li J, Chen Y, et al. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int J Remote Sens, 2008, 29: 3105–3117CrossRefGoogle Scholar
  29. 29.
    Wang L, Sousa, W P, Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int J Remote Sens, 2004, 25: 5655–5668CrossRefGoogle Scholar
  30. 30.
    Yu Q, Gong P, Clinton N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm Eng Remote Sens, 2006, 72: 799–811Google Scholar
  31. 31.
    Kettig R L, Landgrebe D A. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Trans Geosci Electron, 1976, 14: 19–26CrossRefGoogle Scholar
  32. 32.
    Paul T, Philip H. High spatial resolution remote sensing data for forest ecosystem classification: An examination of spatial scale. Remote Sens Environ, 2000, 72: 268–289CrossRefGoogle Scholar
  33. 33.
    Sotaro T, Toshiro S. Cover: A new frontier of remote sensing from IKONOS images. Int J Remote Sens, 2001, 22: 1–5CrossRefGoogle Scholar
  34. 34.
    Volker W. Object-based classification of remote sensing data for change detection. ISPRS-J Photogramm Remote Sens, 2004, 58: 225–238CrossRefGoogle Scholar
  35. 35.
    Roger T S, Georges S, Jean L. Using color, texture, and hierarchical segmentation for high-resolution remote sensing. ISPRS-J Photogramm Remote Sens, 2008, 63: 156–168CrossRefGoogle Scholar
  36. 36.
    Huang X, Zhang L P, Li P X. Classification of high spatial resolution remotely sensed imagery based upon fusion of multiscale features and SVM. J Remote Sens, 2007, 11: 48–54Google Scholar
  37. 37.
    Binaghi E, Gallo I, Pepe M. A cognitive pyramid for contextual classification of remote sensing images. IEEE Trans Geosci Remote Sensing, 2003, 41: 2906–2992CrossRefGoogle Scholar
  38. 38.
    Bruzzone L, Carlin L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans Geosci Remote Sensing, 2006, 44: 2587–2600CrossRefGoogle Scholar
  39. 39.
    Hay G J, Blaschke T, Marceau D J, et al. A comparison of three image- object methods for the multiscale analysis of landscape structure. ISPRS-J Photogramm Remote Sens, 2003, 57: 327–345CrossRefGoogle Scholar
  40. 40.
    Huang X, Zhang L P. Comparison of vector stacking, multi-SVMs fuzzy output, and multi-SVMs voting methods for multiscale VHR urban mapping. IEEE Geosci Remote Sens Lett, 2010, 7: 262–266Google Scholar
  41. 41.
    Zhou C H, Luo J C. Geo-Computation for High-resolution Satellite Remote Sensing Images. Beijing: Science Press, 2009Google Scholar
  42. 42.
    Huang X, Zhang L P. A multilevel decision fusion approach for urban mapping using very-high-resolution multi/hyper-spectral imagery. Int J Remote Sens, 2012, 33: 3354–3372CrossRefGoogle Scholar
  43. 43.
    Song M, Civco D. Road extraction using SVM and image segmentation. Photogramm Eng Remote Sens, 2004, 70: 1365–1371Google Scholar
  44. 44.
    Aksoy S, Koperski K, Tusk C, et al. Learning Bayesian classifiers for scene classification with a visual grammar. IEEE Trans Geosci Remote Sensing, 2005, 43: 581–589CrossRefGoogle Scholar
  45. 45.
    Liénou M, Maître H, Datcu M. Semantic annotation of satellite images using latent Dirichlet allocation. IEEE Geosci Remote Sens Lett, 2010, 7: 28–32CrossRefGoogle Scholar
  46. 46.
    Butler D. 2020 computing: Everything, everywhere. Nature, 2006, 440: 402–405CrossRefGoogle Scholar
  47. 47.
    Bulter D. Agencies join forces to share data. Nature, 2007, 446: 354Google Scholar
  48. 48.
    Chen N, Di L, Yu G, et al. Geo-Processing workflow driven wildfire hot pixel detection under sensor web environment. Comput Geosci, 2010, 36: 362–372CrossRefGoogle Scholar
  49. 49.
    Kridskron A, Chen N, Peng C, et al. Flood detection and mapping of the Thailand Central Plain using RADARSAT and MODIS under a sensor web environment. Int J Appl Earth Obs, 2012, 13: 245–255Google Scholar
  50. 50.
    Chen N, Li D R, Di L, et al. An automatic SWILC classification and extraction for the AntSDI under a Sensor Web environment. Can J Remote Sens (IPY Special Issue), 2010, 36: 1–12Google Scholar
  51. 51.
    NASA. Report from the Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) Sensor Web meeting, 2–3 April 2008. Orlando: NASA Earth Science Technology Office, 2008Google Scholar
  52. 52.
    Chen Z, Chen N, Di L, et al. A flexible data and sensor planning service for virtual sensors based on web Service. IEEE Sens J, 2011, 11: 1429–1439CrossRefGoogle Scholar
  53. 53.
    Chen N, Di L, Chen Z, et al. An efficient method for near-real-time on-demand retrieval of remote sensing observations. IEEE J Sel Top Appl (High Performance Computing Special Issue), 2011, 4: 615–625Google Scholar
  54. 54.
    Chen N, Di L, Gong J, et al. Automatic on-demand data feed service for AutoChem based on reusable geo-processing workflow. IEEE J Sel Top Appl (Sensor Web Special Issue), 2010, 3: 418–426Google Scholar
  55. 55.
    Chen N, Di L, Yu G, et al. Use of ebRIM-based CSW with SOSs for registry and discovery of remote-sensing observations. Comput Geosci, 2009, 35: 360–372CrossRefGoogle Scholar
  56. 56.
    Chen Z, Di L, Yu G, et al. Real-time on-demand motion video change detection in the sensor web environment. Comput J, 2011, 54: 2000–2016CrossRefGoogle Scholar
  57. 57.
    Chen N, Di L, Yu G. A flexible geospatial sensor observation service for diverse sensor data based on Web service. ISPRS—J Photogramm Remote Sens, 2009, 64: 274–282Google Scholar
  58. 58.
    John D, Thomas U, Gerald S, et al. An open distributed architecture for sensor networks for risk management. Sensors, 2008, 8: 1755–1773Google Scholar
  59. 59.
    Simonis I. The Sensor Web: GEOSS’s Foundation Layer. In: GEO Secretariat. The Full Picture, Tudor Rose, 2007. 61–63Google Scholar
  60. 60.
    Foster I. Service-oriented science. Science, 2005, 308: 814–817CrossRefGoogle Scholar
  61. 61.
    Sheth A, Henson C, Sahoo S S. Semantic sensor web. IEEE Internet Comput, 2008, 12: 78–83CrossRefGoogle Scholar
  62. 62.
    Van-Zyl T L, Simonis I, McFerren G. The sensor web: Systems of sensor systems. Int J Digital Earth, 2009, 2: 16–30CrossRefGoogle Scholar
  63. 63.
    Craglia M, et al. Digital Earth 2020: Towards the vision for the next decade. Int J Digital Earth, 2012, 5: 4–21CrossRefGoogle Scholar
  64. 64.
    Yang C, Chen N, Di L. Restful based heterogeneous geoprocessing workflow interoperation for sensor web service. Comput Geosci, 2012, doi: 10.1016/j.cageo.2011.11.010Google Scholar
  65. 65.
    Zhang J. Multi-source remote sensing data fusion: Status and trends. Int J Image Data Fusion, 2010, 1: 5–24CrossRefGoogle Scholar
  66. 66.
    Li X, Huang C L, Che T J, et al. The evolutional and prospective research to the Chinese land surface data assimilation system. Prog Nat Sci, 2007, 17: 163–173CrossRefGoogle Scholar
  67. 67.
    Chen N, Chen Z, Hu C, et al. A capability matching and ontology reasoning method for high precision open GIS Service discovery. Int J Digital Earth, 2011, 4: 449–470CrossRefGoogle Scholar
  68. 68.
    Yue P, Di L, Gong J Y, et al. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure. Geoinformatica, 2011, 15: 273–303CrossRefGoogle Scholar
  69. 69.
    Li D R, Zhu Q, Zhu X Y, et al. Task-oriented Focusing Service Supported by Remote Sensing Information. Beijing: Science Press, 2010Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • DeRen Li
    • 1
  • QingXi Tong
    • 2
  • RongXing Li
    • 3
  • JianYa Gong
    • 1
  • LiangPei Zhang
    • 1
  1. 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
  2. 2.Institute of Remote Sensing ApplicationChinese Academy of SciencesBeijingChina
  3. 3.Center for Spatial Information and Sustainable DevelopmentTongji UniversityShanghaiChina

Personalised recommendations