Science China Earth Sciences

, Volume 55, Issue 6, pp 1001–1011 | Cite as

Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands

  • YingYing Chen
  • Kun Yang
  • WenJun Tang
  • Jun Qin
  • Long Zhao
Research Paper

Abstract

This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine grassland stations and North China flux stations, with a total of 34 stations and 77 soil profiles. Measured data indicate that the topsoils of alpine grasslands contain high SOC contents than underlying soil layers, which leads to higher soil porosity values and lower thermal conductivity and bulk density values in the topsoils. However, this stratification is not evident at the lowland stations due to low SOC contents. Evaluations against measured data show that three thermal conductivity schemes used in land surface models severely overestimate the values for soils with high SOC content (i.e. topsoils of alpine grassland), but they are better for soils with low SOC content. A new parameterization is then developed to take the impacts of SOC into account. The new one can well estimate the soil thermal conductivity values in both low and high SOC content cases, and therefore, it is a potential candidate of thermal conductivity scheme to be used in land surface models.

Keywords

soil organic carbon soil thermal parameters alpine grassland parameterization 

References

  1. 1.
    de Vries D A. Thermal properties of soils. In: van Wijk W R, ed. Physics of Plant Environments. Amsterdam: North-Holland Publishing Company, 1963. 210–235Google Scholar
  2. 2.
    Johansen O. Thermal conductivity of soils. Dissertation for the Doctoral Degree. Trondheim: University of Trondheim, 1975Google Scholar
  3. 3.
    Farouki O T. The thermal properties of soils in cold regions. Cold Reg Sci Tech, 1981, 5: 67–75CrossRefGoogle Scholar
  4. 4.
    McCumber M C, Pielke R A. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part I: Soil layer. J Geophys Res, 1981, 86: 9929–9938CrossRefGoogle Scholar
  5. 5.
    Massman W J. Correcting errors associated with soil heat flux measurements and estimating soil thermal properties from soil temperature and heat flux plate data. Agr Forest Meteorol, 1992, 59: 249–266CrossRefGoogle Scholar
  6. 6.
    Côté J, Konrad J M. A generalized thermal conductivity model for soils and construction materials. Can Geotech J, 2005, 42: 443–458CrossRefGoogle Scholar
  7. 7.
    Lu S, Ren T S, Gong Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J, 2007, 71: 8–14CrossRefGoogle Scholar
  8. 8.
    Dai Y, Zeng X, Dickinson R E, et al. The Common Land Model. Bull Amer Meteor Soc, 2003, 84: 1013–1023CrossRefGoogle Scholar
  9. 9.
    Oleson K W, Dai Y, Bonan G B, et al. Technical description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR. Nat Center Atmos Res, 2004Google Scholar
  10. 10.
    Ek M B, Mitchell K E, Lin Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J Geophys Res, 2003, 108: 8851CrossRefGoogle Scholar
  11. 11.
    Alain M B, Passerat D S, Bruno A M, et al. Apparent soil thermal diffusivity, a case study: HQPEX-Sahel experiment. Agr Forest Meteorol, 1996, 81: 201–216CrossRefGoogle Scholar
  12. 12.
    Peters-Lidard C D, Blackburn E, Liang X, et al. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci, 1998, 55: 1209–1224CrossRefGoogle Scholar
  13. 13.
    Lawrence D M, Slater A G. Incorporating organic soil into a global climate model. Clim Dyn, 2008, 30: 145–160CrossRefGoogle Scholar
  14. 14.
    Luo S Q, Lü S H, Zhang Y. Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau (in Chinese). Chin J Geophys, 2009, 52: 919–928Google Scholar
  15. 15.
    Sun S F. Biophysical and Biochemical Mechanisms and Their Parameterization in Context of Land Surface Processes (in Chinese). Beijing: China Meteorological Press, 2005. 307Google Scholar
  16. 16.
    Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J Meteor Soc Jpn, 2007, 85A: 229–242CrossRefGoogle Scholar
  17. 17.
    Yang K, Koike T, Kaihotsu I, et al. Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions. J Hydrometeorol, 2009, 10: 780–793CrossRefGoogle Scholar
  18. 18.
    Qin J., Liang S L, Yang K, et al. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. J Geophys Res, 2009, 114: D15103CrossRefGoogle Scholar
  19. 19.
    Tian X J, Xie Z H, Dai A G, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. J Geophys Res, 2009, 114: D16102CrossRefGoogle Scholar
  20. 20.
    Montzka C, Moradkhani H, Weihermüller L, et al. Hydraulic parameter estimation by remote-sensed top soil moisture observations with the particle filter. J Hydrol, 2011, 399: 410–421CrossRefGoogle Scholar
  21. 21.
    Yang K, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J Geophys Res, 2005, 110: D08101CrossRefGoogle Scholar
  22. 22.
    Luo S Q, Lü S H, Zhang Y, et al. Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM (in Chinese). Plateau Meteorol, 2008, 27: 259–271Google Scholar
  23. 23.
    van der Velde R, Su Z, Ek M, et al. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan Plateau site. Hydrol Earth Syst Sci, 2009, 13: 759–777CrossRefGoogle Scholar
  24. 24.
    Yang K, Chen Y Y, Qin J. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci, 2009, 13: 687–701CrossRefGoogle Scholar
  25. 25.
    Letts M G, Roulet N T, Comer N T, et al. Parameterization of peatland hydraulic properties for the Canadian Land Surface Scheme. Atmos Ocean, 2000, 38: 141–160CrossRefGoogle Scholar
  26. 26.
    Beringer J, Lynch A H, Chapin F S, et al. The representation of arctic soils in the land surface model: The importance of mosses. J Clim, 2001, 14: 3324–3335CrossRefGoogle Scholar
  27. 27.
    Koike T. The coordinated enhanced observing period—An initial step for integrated global water cycle observation. WMO Bull, 2004, 53: 1–8Google Scholar
  28. 28.
    Ma Y M, Kang S C, Zhu L P, et al. Tibetan observation and research Platform-atmosphere-land interaction over a hetogeneous landscape. Bull Amer Meteor Soc, 2008, 89: 1487–1492CrossRefGoogle Scholar
  29. 29.
    Wang H S, Jia G S, Fu C B, et al. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sens Environ, 2010, 114: 2248–2258CrossRefGoogle Scholar
  30. 30.
    Wang J, Ye B S, Zhang S Q, et al. Changing features of CO2 fluxes in alpine meadow in the upper reaches of Sule River, Qilianshan (in Chinese). J Glaciol Geocryol, 2011, 33: 646–653Google Scholar
  31. 31.
    Yi S H, Zhou Z Y, Ren S L, et al. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau. Environ Res Lett, 2011, in pressGoogle Scholar
  32. 32.
    Liu S M, Li X W, Shi S J, et al. Measurement, analysis and application of surface energy and water vapor fluxes at large scale (in Chinese). Adv Earth Sci, 2010, 25: 1113–1127Google Scholar
  33. 33.
    Yang J L, Zhang G L, Li D C, et al. Relationships of soil particle size distribution between sieve-pipette and laser diffraction methods relations (in Chinese). Acta Pedol Sin, 2009, 46: 772–780Google Scholar
  34. 34.
    Ekwue E I, Stone R J, Bhagwat D. Thermal conductivity of some compacted Trinidadian soils as affected by peat content. Biosyst Eng, 2006, 94: 461–469CrossRefGoogle Scholar
  35. 35.
    Dahiya R, Ingwersen J, Streck T. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Til Res, 2007, 96: 52–63CrossRefGoogle Scholar
  36. 36.
    Akinyemi O D, Sauer T J. Effects of heat sink compounds on contact resistance of porous media. Thermal Sci, 2007, 11: 113–124CrossRefGoogle Scholar
  37. 37.
    Sailor D J, Hutchinson D, Bokovoy L. Thermal property measurements for ecoroof soils common in the western US. Energ Buildings, 2008, 40: 1246–1251CrossRefGoogle Scholar
  38. 38.
    Global Soil Data Task, Global Soil Data Products CD-ROM (IGBPDIS) [CD-ROM], Int. Geosphere-Biosphere Programme, Data and Inf. Syst., Potsdam, 2000, Germany. Available from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tenn.; http://www.daac.ornl.gov
  39. 39.
    Shangguan W, Dai Y, Liu B, et al. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 2011, doi: 10.1016/j.geoderma.2011.01.013Google Scholar
  40. 40.
    Kersten M S. Thermal properties of soils. Univ Minnesota Eng Exp Station Bull, 1949, 52: 28 1012–1020Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • YingYing Chen
    • 1
  • Kun Yang
    • 1
  • WenJun Tang
    • 1
    • 2
  • Jun Qin
    • 1
  • Long Zhao
    • 1
    • 2
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations