Science China Earth Sciences

, Volume 55, Issue 2, pp 306–314 | Cite as

Quaternary primary productivity in Porcupine Seabight, NE North Atlantic

  • XiangHui Li
  • Akihiro Kano
  • YunHua Chen
  • Chiduru Takashima
  • WenLi Xu
  • BaoLiang Xu
  • RuiJian Wang
  • IODP Leg 307 Scientists
Research Paper

Abstract

Biogenic opal and calcium carbonate contents in the Quaternary fine-grained sediments in the deep sea coral mound area (Hole U1317E and Hole U1318B drilled by IODP Expedition 307) in Porcupine Seabight, southwest off Ireland, were measured to estimate the primary productivity (Pp) of the surface seawater in NE Atlantic. The results from the two holes commonly show relatively high Pp values of 10–30 g cm−2 ky−1, having stratigraphic cyclicity reversely correlated with the δ13C profile. The high Pp could be attributed to the oceanic setting controlled by the Eastern North Atlantic (Central) Water and Shelf Edge Current, which have been strongly influenced by the obliquity forcing of the Milankovitch cycle. A positive covariance was observed between high Pp and the mound development in U1317E, implying that the organic matter was the principal food source for the mound coral community. It is proposed that the pelagic marl matrix of the mound sediments provides information of the surface water productivity that is useful for reconstructing the paleoceanography and the paleoclimate in the NW Atlantic.

Keywords

primary productivity biogenic opal calcium carbonate Quaternary IODP 307 Porcupine Seabight North Atlantic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopaska-Merkel D C, Haywick D W. Carbonate mounds: Sedimentation, organismal response, and diagenesis. Sediment Geol, 2001, 145: 157–159CrossRefGoogle Scholar
  2. 2.
    James N P, von der Borch C C. Carbonate shelf edge off southern Australia: A prograding open-platform margin. Geology, 1991, 19: 1005–1008CrossRefGoogle Scholar
  3. 3.
    James N P, Bone Y, Collins L B, et al. Surficial sediments of the Great Australian Bight: Facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sed Res, 2001, 71: 549–567CrossRefGoogle Scholar
  4. 4.
    Betzler C, Saxena S, Swart P K, et al. Cool-water carbonate sedimentology and eustasy, Pleistocene upper slope environments, Great Australian Bight (Site 1127, ODP LEG 182). Sed Geol, 2005, 175: 169–188CrossRefGoogle Scholar
  5. 5.
    Freiwald A. Geobiology of Lophelia pertusa (Scleractinia) reefs in the North Atlantic. Habilitation Thesis, Universität Bremen, 1998. 1–116Google Scholar
  6. 6.
    Freiwald A. Shipboard Party (2002) Cruise report RV Poseidon Cruise 292. Bremen: Reykjavik-Galway, 2002. 1–86Google Scholar
  7. 7.
    Paull C K, Neumann A C, am Ende B A, et al. Lithoherms on the Florida-Hatteras slope. Mar Geol, 2000, 166: 83–101CrossRefGoogle Scholar
  8. 8.
    Huvenne V A I, De Mol B, Henriet J P. A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland. Mar Geol, 2003, 198: 5–25CrossRefGoogle Scholar
  9. 9.
    Huvenne V A I, Beyer A, de Haas H, et al. The seabed appearance of different coral bank provinces in the Porcupine Seabight, NE Atlantic: Results from sidescan sonar and ROV seabed mapping. In: Freiwald A, Roberts J M, eds. Cold-water Corals and Ecosystems. Berlin-Heidelberg: Springer-Verlag, 2005. 535–569CrossRefGoogle Scholar
  10. 10.
    Ferdelman T G, Kano A, Williams T. the Expedition 307 Scientists. Modern Carbonate Mounds: Porcupine Drilling. Proceeding of IODP 307, 2006, 1–65. doi: 10.2204/iodp.proc.307.104Google Scholar
  11. 11.
    Wright J D. Global climate change in marine stable isotope records. Quaternary geochronology: Methods and applications. AGU Ref Shelf, 2000, 4: 432–438Google Scholar
  12. 12.
    Llave E, Hernandez-Molina F J, Stow D A V, et al. Reconstructions of the Mediterranean Outflow Water during the quaternary based on the study of changes in buried mounded drift stacking pattern in the Gulf of Cadiz. Mar Geophy Res, 2007, 28: 379–394CrossRefGoogle Scholar
  13. 13.
    Kano A, Ferdelman T G, Williams T, et al. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during IODP Expedition 307. Geology, 2007, 35: 1051–1054CrossRefGoogle Scholar
  14. 14.
    Louwye S, Foubert A, Mertens K, et al. Integrated stratigraphy and palaeoecology of the Lower and Middle Miocene of the Porcupine Basin. Geol Mag, 2007, 145: 1–24Google Scholar
  15. 15.
    Foubert A, Henriet J P. Nature and significance of the recent carbonate mound record: The Mound Challenger Code. Heidelberg: Springer-Verlag, 2009Google Scholar
  16. 16.
    Webster G, Blazejak A, Cragg B A, et al. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbio, 2009, 11: 239–257CrossRefGoogle Scholar
  17. 17.
    Sakai S, Kano A, Abe K, et al. Origin, glacial-interglacial responses and its controlling factors of a cold-water coral mound in NE Atlantic. Palaeoceanography, 2009, 24: PA2213. doi: 10.1029/2008PA001695CrossRefGoogle Scholar
  18. 18.
    Li X H, Takashima C, Kano A, et al. Pleistocene geochemical stra tigraphy of the borehole 1317E (IODP Exp. 307) in Porcupine Seabight, SW off Ireland: Applications to palaeoceanography and palaeoclimate of the coral mound development. J Quat Sci, 2011, 26: 178–189CrossRefGoogle Scholar
  19. 19.
    Pirlet H, Wehrmann L M, Brunner B, et al. Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland. Sedimentology, 2010, 57: 786–805CrossRefGoogle Scholar
  20. 20.
    Titschack J, Thierens M, Dorschel B, et al. Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Mar Geol, 2009, 259: 36–46CrossRefGoogle Scholar
  21. 21.
    Kano A, Shen C C. Revised age model for the upper mound section of Challenger Mound in the Irish offshore. 18th Int Sediment Cong, Mendoza, Argentina, Abstract, 2010Google Scholar
  22. 22.
    Huvenne V A I, Van Rooij D, De Mol B, et al. Sediment dynamics and palaeo-environmental context at key stages in the Challenger cold-water coral mound formation: Clues from sediment deposits at the mound base. Deep-Sea Res I, 2009, 56: 2263–2280CrossRefGoogle Scholar
  23. 23.
    Thierens M, Titschack J, Dorschel B, et al. The 2.6 Ma depositional sequence from the Challenger cold-water coral carbonate mound (IODP Exp. 307): Sediment contributors and hydrodynamic palaeo-environments. Mar Geol, 2010, 271: 260–277CrossRefGoogle Scholar
  24. 24.
    Su J L, Li Y, Wang Q. Some important research topics for China in ocean sciences in the early 21st century (in Chinese with English abstract). Adv Ear Sci, 2001, 16: 658–663Google Scholar
  25. 25.
    Department of Marine Geology, Tongji University. Generation of Palaeoceanograhy (in Chinese). Shanghai: Press of Tongji University, 1989. 1–316Google Scholar
  26. 26.
    Ni J Y, Yao X Y. Method to study ancient oceanic productivity (in Chinese). Mar Geol Lett, 2004, 20: 30–39Google Scholar
  27. 27.
    Huang Y J, Wang C S, Wang Y L. Progress in the study of proxies of palaeoceanoproductivity (in Chinese with English abstract). Ear Sci Front, 2005, 12: 163–170Google Scholar
  28. 28.
    Baldauf J G, Barron J A. Evolution of biosiliceous sedimentation patterns-Eocene through Quaternary: Paleoceanographic response to Polar cooling. In: Bleid U, Thiede J, eds. Geological History of the Polar Oceans: Arctic versus Antarctic. Dordrecht: Kluwer Academic Publishers, 1990. 575–607Google Scholar
  29. 29.
    Charles C D, Froclich P N, Zibello, M A, et al. Biogenic opal in southern ocean sediments over the last 450000 years: Implications for surface water chemistry and circulation. Paleoceanography, 1991, 6: 697–728CrossRefGoogle Scholar
  30. 30.
    LaMontagne R W, Murray R W, Wei K Y, et al. Decoupling of carbonate preservation, carbonate concentration, and biogenic accumulation: A 400-kyr record from the central equatorial Pacific Ocean. Paleoceanography, 1996, 11: 553–562CrossRefGoogle Scholar
  31. 31.
    Li J R, Wang R J, Li B H. Variations of opal accumulation rates and paleoproductivity over the past 12 Ma at ODP Site 1143, southern South China Sea. Chin Sci Bull, 2002, 47: 235–237Google Scholar
  32. 32.
    Wang R J, Li J. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143. Chin Sci Bull, 2003, 48: 74–77CrossRefGoogle Scholar
  33. 33.
    Cortese G, Gersonde R, Hillenbrand C D, et al. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet Sci Lett, 2004, 224: 509–527CrossRefGoogle Scholar
  34. 34.
    Li J, Wang R J. Paleoproductivity variability of the northern South China Sea during the Past 1 Ma: The Opal Record from ODP Site 1144 (in Chinese with English abstract). Acta Geol Sin, 2004, 78: 228–233Google Scholar
  35. 35.
    Hyun S, Bahk J J, Suk B C, et al. Alternative modes of Quaternary pelagic biosiliceous and carbonate sedimentation: A perspective from the East Sea (Japan Sea). Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 88–99CrossRefGoogle Scholar
  36. 36.
    Broecker W S, Peng T H. Tracers in the Sea. New York: Eldigio Press, 1982. 1–690Google Scholar
  37. 37.
    Honjo S. Studies of ocean fluxes in time and space by bottom-tethered sediment trap arrays: A recommendation. Proceeding of Global Ocean Flux Study Workshop. Washington D C: National Academic Press, 1984. 305–324Google Scholar
  38. 38.
    Deusser W G, Ross E H. Seasonally abundant planktonic foraminifera of Sargasso Sea: Succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J Foram Res, 1989, 19: 268–293CrossRefGoogle Scholar
  39. 39.
    Croker P F, Shannon P M. The evolution and hydrocarbon prospectivity of the Porcupine Basin, offshore Ireland. In: Brooks J, Glennie K W, eds. Petroleum Geology of North West Europe. London: Graham and Trotman, 1987. 633–642Google Scholar
  40. 40.
    Williams T, Kano A, Ferdelman T, et al. Cold-water coral mounds revealed. Eos (Trans actions, American Geophysical Union), 2006, 87: 525CrossRefGoogle Scholar
  41. 41.
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in the pelagic marine sediments. Deep-Sea Res, 1989, 36: 1415–1426CrossRefGoogle Scholar
  42. 42.
    Van Andel T H, Heath G R, Moore T C. Cenozoic history and paleoceanography of the equatorial Pacific Ocean. GSA Mem, 1975, 143: 1–134Google Scholar
  43. 43.
    Siesser W. Palaeoproductivity of the Indian Ocean during the Tertiary Period. Glob Planet Change, 1995, 11: 71–88CrossRefGoogle Scholar
  44. 44.
    Brummer G J A, van Eijden A J M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar Micropaleont, 1992, 19: 99–117CrossRefGoogle Scholar
  45. 45.
    Betzer P R, Showers W J, Laws E A, et al. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep Sea Res, 1984, 31: 1–11CrossRefGoogle Scholar
  46. 46.
    Takashima C, Hori M, Kano A. Data report: geochemical charactreization of a lithified horizon of Challenger Mound, Hole 1318B. Proc IODP, 2009, 307: 1–7Google Scholar
  47. 47.
    Thunell R C, Moore W S, Dymond J, et al. Elemental and isotopic fluxes in the Southern California Bight: A time-series sediment trap study in the San Pedro Basin. J Geophy Res, 1994, 99: 875–889CrossRefGoogle Scholar
  48. 48.
    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography, 2005, 20: PA1003: 1–17Google Scholar
  49. 49.
    Channell J E T, Labs J, Raymo M E. The Reunion Subchronozone at ODP Site 981 (Feni Drift, North Atlantic). Earth Planet Sci Lett, 2003, 215: 1–12CrossRefGoogle Scholar
  50. 50.
    Jovane L, Acton G, Florindo F, et al. Geomagnetic field behavior at high latitudes from a paleomagnetic record from Eltanin core 27–21 in the Ross Sea sector, Antarctica. Earth Planet Sci Lett, 2008, 267: 435–443CrossRefGoogle Scholar
  51. 51.
    Diester-Haass L, Billups K, Emeis K C. Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link? Paleoceanography, 2006, 21: PA4216, doi: 10.1029/2006PA001267CrossRefGoogle Scholar
  52. 52.
    Bathurst R G C. Stromatactes origin related to submarine cemented crusts in Paleozoic mud mounds. Geology, 1980, 8: 132–134CrossRefGoogle Scholar
  53. 53.
    O’Reilly B M, Readman P W, Shannon P M, et al. A model for the development of a carbonate mound population in the Rockall Trough based on deep-towed sidescan sonar data. Mar Geol, 2003, 198: 55–66CrossRefGoogle Scholar
  54. 54.
    Masson D G, Howe J A, Stoker M S. Bottom-current sediment waves, sediment drifts and contourites in the northern Rockall Trough. Mar Geol, 2002, 192: 215–237CrossRefGoogle Scholar
  55. 55.
    Van Rooij D, De Mol B, Huvenne V, et al. Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol, 2003, 195: 31–53CrossRefGoogle Scholar
  56. 56.
    Huvenne V A I, Croker P F, Henriet J P. A refreshing 3-dimensional view of an ancient sediment collapse and slope failure. Terra Nova, 2002, 14: 33–40CrossRefGoogle Scholar
  57. 57.
    New A L, Barnard S, Herrmann P, et al. On the origin and pathway of the saline inflow to the Nordic Seas: Insights from models. Progr Oceanogr, 2001, 48: 255–287CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • XiangHui Li
    • 1
    • 3
  • Akihiro Kano
    • 2
  • YunHua Chen
    • 4
  • Chiduru Takashima
    • 5
  • WenLi Xu
    • 6
  • BaoLiang Xu
    • 7
  • RuiJian Wang
    • 8
  • IODP Leg 307 Scientists
  1. 1.State Key Laboratory of Enhanced Oil Recovery, Institute of Petroleum Exploration & DevelopmentChina National Petroleum CorporationBeijingChina
  2. 2.Graduate School of Social and Cultural StudiesKyushu UniversityFukuokaJapan
  3. 3.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  4. 4.Geological Science Research Institute of Shengli OilfieldSINOPECDongyingChina
  5. 5.Environment Studies, Faculty of Culture and EducationSaga UniversitySagaJapan
  6. 6.Institute of Sedimentary GeologyChengdu University of TechnologyChengduChina
  7. 7.Sichuan Research CentreBureau of Geophysical Prospecting of China National Petroleum CorporationChengduChina
  8. 8.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina

Personalised recommendations