Science China Earth Sciences

, 54:1458 | Cite as

Global warming, human-induced carbon emissions, and their uncertainties

  • JingYun Fang
  • JiangLing Zhu
  • ShaoPeng Wang
  • Chao Yue
  • HaiHua Shen
Review

Abstract

In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quantify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernmental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.

Keywords

carbon emissions climate change global warming human activities natural forces uncertainty 

References

  1. 1.
    Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2007Google Scholar
  2. 2.
    Gleick P H, Sdams R M, Amasino R M, et al. Climate change and the integrity of science. Science, 2010, 328: 689–690CrossRefGoogle Scholar
  3. 3.
    Ding Z L, Duan X N, Ge Q S, et al. Control of atmospheric CO2 concentration by 2050: A calculation on the emission rights of different countries. Sci China Ser D-Earth Sci, 2009, 52: 1447–1469CrossRefGoogle Scholar
  4. 4.
    Fang J Y, Wang S P, Yue C, et al. Scenario analysis on the global carbon emissions reduction global proposed in the declaration of the 2009 G8 Summit. Sci China Ser D-Earth Sci, 2009, 52: 1694–1702CrossRefGoogle Scholar
  5. 5.
    Wang S P, Zhu J L, Yue C, et al. Carbon emissions and socio-economic development (Carbon emissions and social development, II). Acta Sci Nat Univ Pekinensis, 2010, 46: 505–509Google Scholar
  6. 6.
    ICSU. Statement by ICSU on the Controversy Around the 4th IPCC Assessment. 23 February, 2010Google Scholar
  7. 7.
    Lomborg B. The Skeptical Environmentalist: Measuring the Real State of the World. New York: Cambridge University Press, 2001. 268Google Scholar
  8. 8.
    Singer S F, Anderson W, Goldberg F, et al. Nature, not human activity, rules the climate: Summary for policymakers of the report of the Nongovernmental International Panel on Climate Change (NIPCC). Chicago: The Heatland Institute, 2008. 40Google Scholar
  9. 9.
    Idso C, Singer S F. Climate Change Reconsidered: 2009 Report of the Nongovernmental International Panel on Climate Change (NIPCC). Chicago: The Heartland Institute, 2009. 868Google Scholar
  10. 10.
    Heffernan O. Cliamte data spat intensifies. Nature, 2009, 460: 787CrossRefGoogle Scholar
  11. 11.
    Schiermeier Q. IPCC flooded by criticism. Nature, 2010, 463: 596–597CrossRefGoogle Scholar
  12. 12.
    Committee to Review the IPCC (InterAcademy Council), Climate Change Assessments: Review of the Processes and Procedures of the IPCC. The Report of the InterAcademy Council, 2010, Amsterdam, The NetherlandsGoogle Scholar
  13. 13.
    Singer S F. Human contribution on climate change questionable. EOS, 1999, 80: 183CrossRefGoogle Scholar
  14. 14.
    Singer S F. Science editor bias on climate change? Science, 2003, 301: 595–596CrossRefGoogle Scholar
  15. 15.
    Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J Geophys Res, 2006, 111: D12106CrossRefGoogle Scholar
  16. 16.
    Smith D M, Cusack S, Colman A W, et al. Improved surface temperature prediction for the coming decade from a global climate model. Science, 2007, 317: 796–799CrossRefGoogle Scholar
  17. 17.
    Mann M E, Zhang Z H, Hughes M K, et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc R Soc A-Math Phys Eng Sci, 2008, 105: 13252–13257Google Scholar
  18. 18.
    Hansen J, Reudy R, Sato M, et al. Global surface temperature change. Rev Geophys, 2010, 48: RG4004CrossRefGoogle Scholar
  19. 19.
    The Compiling Committee of China’s National Assessment Report on Climate Change. China’s National Assessment Report on Climate Change. Beijing: Science Press, 2007Google Scholar
  20. 20.
    Wang S P, Wang Z H, Piao S L, et al. Regional differences in the timing of recent air warming during the past four decades in China. Chin Sci Bull, 2010, 55: 1968–1973CrossRefGoogle Scholar
  21. 21.
    Li Q X, Dong W J, Li W, et al. Assessment of the uncertainties in temperature change in China during the last century. Chin Sci Bull, 2010, 55: 1974–1982CrossRefGoogle Scholar
  22. 22.
    Peng S S, Piao S L, Ciais P, et al. Change in winter snow depth and its impacts on vegetation in China. Glob Change Biol, 2010, doi: 10.1111/j.1365-2486.2010.02210xGoogle Scholar
  23. 23.
    Gerland S, Renner A H H, Godtliebsen F, et al. Decrease of sea ice thickness at Hopen, Barents Sea, during 1966–2007. Geophys Res Lett, 2008, 35: L06501CrossRefGoogle Scholar
  24. 24.
    Byers A. Contemporary human impacts on alpine ecosystems in the Sagarmatha (Mt. Everest) National Park, Khumbu, Nepal. Ann Assoc Am Geogr, 2005, 95: 112–140CrossRefGoogle Scholar
  25. 25.
    Allison I, Bindoff N L, Binaschadler R A, et al. The Copenhagen Dignosis. Sydney: The University of New South Wales Climate Change Research Centre (CCRC), 2009. 1–68Google Scholar
  26. 26.
    Zhou L, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999. J Geophys Res, 2001, 106: 20069–20083CrossRefGoogle Scholar
  27. 27.
    Stockli R, Vidale P L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int J Remote Sens, 2004, 25: 3303–3330CrossRefGoogle Scholar
  28. 28.
    Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation. Glob Change Biol, 2006, 12: 672–685CrossRefGoogle Scholar
  29. 29.
    Zheng J Y, Ge Q S, Hao Z X. Impacts of climate warming on plants phenophases in China for the last 40 years. Chin Sci Bull, 2002, 47: 1826–1831CrossRefGoogle Scholar
  30. 30.
    Zhang X X, Ge Q S, Zheng J Y, et al. Responses of spring phenology to climate change in Beijing in last 150 years. Chin J Agr, 2005, 26: 263–267Google Scholar
  31. 31.
    Zhong S Y, Zheng J Y, Ge Q S. Dynamics of autumn phenology of woody plants in Beijing in 1962–2007. Chin J Appl Ecol, 2008, 19: 2352–2356Google Scholar
  32. 32.
    Ren G Y. History, current state and uncertainty of studies of climate change attribution. Adv Earth Sci, 2008, 23: 1084–1091Google Scholar
  33. 33.
    Wang S W. The global warming debate. Chin Sci Bull, 2010, 55: 1961–1962CrossRefGoogle Scholar
  34. 34.
    Ge Q S, et al. Climate Change in China’s History. Beijing: Science Press, 2011Google Scholar
  35. 35.
    Jones P D, Briffa K R, Barnett T P, et al. High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with general circulation model control-run temperatures. Holocene, 1998, 8: 455–471CrossRefGoogle Scholar
  36. 36.
    Wang F, Ge Q S, Chen P Q. Uncertainties of temperature observation data in IPCC assessment report. Acta Geogr Sin, 2009, 64: 828–838Google Scholar
  37. 37.
    Zhao S Q, Da L J, Tang Z Y, et al. Ecological consequences of rapid urban expansion: Shanghai, China. Front Ecol Environ, 2006, 4: 341–346CrossRefGoogle Scholar
  38. 38.
    Zhou L M, Dickinson R E, Tian Y H, et al. Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA, 2004, 101: 9540–9544CrossRefGoogle Scholar
  39. 39.
    Goodridge J D. Urban bias influence on long-term California air temperature trends. Atmos Environ, 1992, 26: 1–7CrossRefGoogle Scholar
  40. 40.
    Trenberth K E, Jones P D, Ambenje P, et al. Observations: Surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007. 235–336Google Scholar
  41. 41.
    Jones P D, Lister D H, Li Q. Urbanization effects in large-scale temperature records, with an emphasis on China. J Geophys Res-Atmos, 2008, 113: D16122CrossRefGoogle Scholar
  42. 42.
    Knight J, Kennedy J J, Folland C, et al. Do global temperature trends over the last decade falsify climate predictions? In State of the Climate in 2008. Bull Am Meteorol Soc, 2009, 90: S22–23Google Scholar
  43. 43.
    Kerr R A. What happened to global warming? Scientists say just wait a bit. Science, 2009, 326: 28–29CrossRefGoogle Scholar
  44. 44.
    Schmidt G, Rahmstorf S. Uncertainty, noise and the art of model-data comparison. 2008, http://www.realclimate.org/index.php/archives/2008/01/uncertaintynoise-and-the-art-of-model-data-comparison
  45. 45.
    Wang S W, Wen X Y, Luo Y, et al. Does the global warming pause in the last decade: 1999–2008? Adv Clim Change Res, 2010, 1: 49–54CrossRefGoogle Scholar
  46. 46.
    Akasofu S. Global warming: What is the scientific truth? (2)—Two natural components of the recent climate change. Energy Resour, 2009, 30: 70–88Google Scholar
  47. 47.
    Weart S R. The Discovery of Global Warming. Cambridge: Harvard University Press, 2008Google Scholar
  48. 48.
    Kiehl J T, Trenberth K E. Earth’s annual global mean energy budget. Bull Am Meteorol Soc, 1997, 78: 197–208CrossRefGoogle Scholar
  49. 49.
    Gerlach T M. Etna’s greenhouse pump. Nature, 1991, 315: 352–353CrossRefGoogle Scholar
  50. 50.
    Evans K M. The greenhouse effect and climate change. In: Evans K M, ed. The Environment: A Revolution in Attitudes. Detroit: Thomson Gale, 2005Google Scholar
  51. 51.
    Santer B D. Identification of human induced changes in atmospheric moisture content. Proc Natl Acad Sci USA, 2007, 104: 15248–15253CrossRefGoogle Scholar
  52. 52.
    Dessler A E. Water vapor cliamte feedback inferred from climate fluctuations 2003–2008. Geophys Res Lett, 2008, 35: L20704CrossRefGoogle Scholar
  53. 53.
    Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev Geophys, 2000, 38: 513–543CrossRefGoogle Scholar
  54. 54.
    Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle. Science, 2001, 294: 2119–2124CrossRefGoogle Scholar
  55. 55.
    Lu Z, Streets D G, Zhang Q, et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys, 2010, 10: 6311–6331CrossRefGoogle Scholar
  56. 56.
    Broecker W S. Global warming: Take action or wait? Chin Sci Bull, 2006, 51: 1489–1499CrossRefGoogle Scholar
  57. 57.
    Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nature Geosci, 2008, 1: 221–227CrossRefGoogle Scholar
  58. 58.
    Mitchell J F B, Johns T C, Gregory J M, et al. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 1995, 376: 501–504CrossRefGoogle Scholar
  59. 59.
    Hansen J, Sato M, Ruedy R, et al. Global warming in the twenty-first century: An alternative scenario. Proc Natl Acad Sci USA, 2000, 97: 9875–9880CrossRefGoogle Scholar
  60. 60.
    Myhre G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325: 187–190CrossRefGoogle Scholar
  61. 61.
    Hansen J E. A slippery slope: How much global warming constitutes “dangerous anthropogenic interference”? Clim Change, 2005, 68: 269–279CrossRefGoogle Scholar
  62. 62.
    Scafetta N, West B J. Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J Geophys Res, 2007, 112: D24S03CrossRefGoogle Scholar
  63. 63.
    Randel W J, Shine K P, Austin J, et al. An update of observed stratospheric temperature trends. J Geophys Res-Atmos, 2009, 114: D02107CrossRefGoogle Scholar
  64. 64.
    Soon W W H. Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years. Geophys Res Lett, 2005, 32: L16712CrossRefGoogle Scholar
  65. 65.
    Usoskin I G, Schussler M, Solanki S K, et al. Solar activity, cosmic rays, and Earth’s temperature: A millennium-scale comparison. J Geophys Res-Space Phys, 2005, 110: A10102CrossRefGoogle Scholar
  66. 66.
    Solanki S K, Krivova N A. Can solar variability explain global warming since 1970? J Geophys Res, 2003, 108: 120CrossRefGoogle Scholar
  67. 67.
    Foukal P C, Frolich C, Spruit F, et al. Variations in solar luminosity and their effect on the Earth’s climate. Nature, 2006, 443: 161–164CrossRefGoogle Scholar
  68. 68.
    Lockwood M, Fröhlich C. Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc A-Math Phys Eng Sci, 2007, 463: 2447–2460CrossRefGoogle Scholar
  69. 69.
    Haigh J, Winning A, Toumi R, et al. An influence of solar spectral variations on radiative forcing of climate. Nature, 2010, 467: 696–699CrossRefGoogle Scholar
  70. 70.
    Kelly P M, Sear C B. Climatic impact of explosive volcanic eruption. Nature, 1984, 311: 740–743CrossRefGoogle Scholar
  71. 71.
    Minnis P, Harrison E F, Stowe L L, et al. Radiative climate forcing by the mount Pinatubo eruption. Science, 1993, 259: 1411–1415CrossRefGoogle Scholar
  72. 72.
    Robock A. Volcanic eruptions and climate. Rev Geophys, 2000, 38: 191–219CrossRefGoogle Scholar
  73. 73.
    Schimel D S. Terrestrial ecosystems and the carbon cycle. Glob Change Biol, 1995, 1: 77–91CrossRefGoogle Scholar
  74. 74.
    Canadell J G, Le Quere C, Raupach M, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 2007, 104: 18866–18870CrossRefGoogle Scholar
  75. 75.
    Schlesinger W H. Biogeochemistry: An Analysis of Global Change. New York: Academic Press, 1997Google Scholar
  76. 76.
    Randerson J T, Chapin F S, Harden J W, et al. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl, 2002, 12: 937–947CrossRefGoogle Scholar
  77. 77.
    Le Quere C. Saturation of the Southern Ocean CO2 sink due to the recent climate change. Science, 2007, 316: 1735–1738CrossRefGoogle Scholar
  78. 78.
    Bond-Lamberty B, Thomson A. Temperature-associated increase in the global soil respiration record. Nature, 2010, 464: 579–582CrossRefGoogle Scholar
  79. 79.
    Houghton R A. Balancing the global carbon budget. Annu Rev Earth Planet Sci, 2007, 35: 313–347CrossRefGoogle Scholar
  80. 80.
    Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 2010, 329: 834–838CrossRefGoogle Scholar
  81. 81.
    Rustad L E, Huntington T G, Boone R D. Controls on soil respiration: Implications for climate change. Biogeochemistry, 2000, 48: 1–6CrossRefGoogle Scholar
  82. 82.
    Janzen H H. Carbon cycling in earth systems—A soil science perspective. Agr Ecosys Environ, 2004, 104: 399–417CrossRefGoogle Scholar
  83. 83.
    Pacala S, Socolow R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 2004, 305: 968–972CrossRefGoogle Scholar
  84. 84.
    Houghton R A. Aboveground forest biomass and the global carbon balance. Glob Change Biol, 2005, 11: 945–958CrossRefGoogle Scholar
  85. 85.
    Schwartz S E. Reply to comments by Foster G., et al., Knutti R., et al., and Scafetta N. on “Heat capacity, time constant, and sensitivity of Earth’s climate system”. J Geophys Res, 2008, 113: D15105CrossRefGoogle Scholar
  86. 86.
    Lindzen R S, Choi Y S. On the determination of climate feedbacks from ERBE data. Geophys Res Lett, 2009, 36: L16705CrossRefGoogle Scholar
  87. 87.
    Trenberth K E, Fasullo J T, O’Dell C, et al. Relationships between tropical sea surface temperature and top-of-atmosphere radiation. Geophys Res Lett, 2010, 37: L03702CrossRefGoogle Scholar
  88. 88.
    Lean J L, Rind D H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett, 2008, 35: L18701CrossRefGoogle Scholar
  89. 89.
    Qian W H, Lu B, Zhu C W. How would global-mean temperature change in the 21st century? Chin Sci Bull, 2010, 55: 1963–1967CrossRefGoogle Scholar
  90. 90.
    Hansen J, Sato M, Ruedy R, et al. Dangerous human-made interference with climate: A GISS model E study. Atmos Chem Phys, 2007, 7: 2287–2312CrossRefGoogle Scholar
  91. 91.
    Ding Z L, Duan X N, Ge Q S, et al. On the major proposals for carbon emission reduction and some related issues. Sci China Ser D-Earth Sci, 2010, 53: 159–172CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • JingYun Fang
    • 1
    • 2
  • JiangLing Zhu
    • 1
    • 2
  • ShaoPeng Wang
    • 1
  • Chao Yue
    • 1
  • HaiHua Shen
    • 1
  1. 1.Department of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
  2. 2.Climate Change Research CenterAcademic Divisions of the Chinese Academy of Sciences at Peking UniversityBeijingChina

Personalised recommendations