Advertisement

Science China Earth Sciences

, Volume 55, Issue 1, pp 76–82 | Cite as

Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field

  • ZhiCai LuoEmail author
  • Qiong Li
  • Kun Zhang
  • HaiHong Wang
Research Paper

Abstract

It is important to quantify mass variations in the Antarctic ice sheet to study the global sea-level rise and climate change. A hybrid filtering scheme employing a combination of the decorrelated filter P3M6 and 300 km Fan filter was used, and the surface mass variations over the Antarctic are recovered from GRACE CSR RL04 monthly gravity field models from August 2002 to June 2010. After deduction of leakage errors using the GLDAS hydrological model and postglacial rebound effects using the glacial isostatic adjustment model IJ05, the variations in the ice sheet mass are obtained. The results reveal that the rate of melting of the Antarctic ice sheet is 80.0 Gt/a and increasing and contributes 0.22 mm/a to the global sea-level rise; the mass loss rate is 78.3 Gt/a in the West Antarctic and 1.6 Gt/a in the East Antarctic. The average mass loss rate increases from 39.3 Gt/a for the period 2002–2005 to 104.2 Gt/a for the period 2006–2010, and its corresponding contribution to the global sea-level rise increases from 0.11 to 0.29 mm/a, which indicates accelerated ice mass loss over the Antarctic since 2006. Moreover, the mass accumulation rates for Enderby Land and Wilkes Land along the coast of East Antarctica decrease for the period 2006–2008 but increase evidently after 2009.

Keywords

GRACE temporal gravity field Antarctic ice sheet mass variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen J L, Wilson C R, Tapley B D, et al. Antarctic regional ice loss rates from GRACE. Earth Planet Sci Lett, 2008, 266: 140–148CrossRefGoogle Scholar
  2. 2.
    Rignot E, Bamber L J, Michiel R, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nature Geosci, 2008, 1: 106–110CrossRefGoogle Scholar
  3. 3.
    Gunter B, Urban T, Riva R, et al. A comparison of coincident GRACE and ICESat data over Antarctica. J Geod, 2009, 83: 1051–1060CrossRefGoogle Scholar
  4. 4.
    Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett, 2004, 31: L09607CrossRefGoogle Scholar
  5. 5.
    Hu X G, Chen J L, Zhou Y H, et al. Seasonal water storage change of the Yangtze River basin detected by GRACE. Sci China Ser D-Earth Sci, 2006, 49: 483–491CrossRefGoogle Scholar
  6. 6.
    Zhong M, Duan J B, Xu H Z, et al. Trend of China land water storage redistribution at medi- and large-spatial scales in recent five years by satellite gravity observations. Chin Sci Bull, 2009, 54: 816–821CrossRefGoogle Scholar
  7. 7.
    Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India. Nature, 2009, 460: 999–1003CrossRefGoogle Scholar
  8. 8.
    Yang Y D, E Dong-Chen, Chao D B, et al. Seasonal and inter-annual change in land water storage from GRACE (in Chinese). Chin J Geophys, 2009, 52: 2987–2992Google Scholar
  9. 9.
    Syed T H, Famiglietti J S, Rodell M, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res, 2008, 44: W02433CrossRefGoogle Scholar
  10. 10.
    Schmidt R, Schwinter P, Flechtner F, et al. GRACE observations of changes in continental water storage. Glob Planet Change, 2006, 50: 112–126CrossRefGoogle Scholar
  11. 11.
    Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L13302CrossRefGoogle Scholar
  12. 12.
    Luthcke S B, Abdalati W, Rowlands D D, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 2006, 314: 1286–1289CrossRefGoogle Scholar
  13. 13.
    Shepherd A, Wingham D. Recent sea-level contribution of the Antarctic and Greenland ice sheets. Science, 2007, 315: 1529–1532CrossRefGoogle Scholar
  14. 14.
    Velicogna I, Wahr J. Measurement of time-variable gravity show mass loss in Antarctic. Science, 2006, 311: 1754–1756CrossRefGoogle Scholar
  15. 15.
    Chen J L, Wilson C R, Blankenship, et al. Antarctic mass rates from GRACE. Geophys Res Lett, 2006, 33: L11502CrossRefGoogle Scholar
  16. 16.
    Ramillien G, Lombard A, Cazenave A, et al. Interannual variations of the mass balance of the Antarctica and Greenland ice sheet from GRACE. Gloab Planet Change, 2006, 53: 198–208CrossRefGoogle Scholar
  17. 17.
    Jekeli C. Alternative methods to smooth the Earth’s gravity. Rep. 327, Dep of Geod Sci and Surv, State Univ Columbus, 1981Google Scholar
  18. 18.
    Wahr J, Molenaar M, Bryan F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 1998, 103,B12: 30205–30229CrossRefGoogle Scholar
  19. 19.
    Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophys Res Lett, 2006, 33: L08402CrossRefGoogle Scholar
  20. 20.
    Han S C, Shum C K, Jekeli C, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int, 2005, 163: 18–25CrossRefGoogle Scholar
  21. 21.
    Zhang Z Z, Chao B F, Lu Y, et al. An effective filter for GRACE time variable gravity: Fan filter, Geophys Res Lett, 2009, 36, doi: 10.1029/2009GL039459Google Scholar
  22. 22.
    Wang H S, Patrick W. Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion on a spherical, self-gravitating Maxwell Earth. Earth Planet Sci Lett, 2006, 244: 576–589CrossRefGoogle Scholar
  23. 23.
    Peltier W R. Global glacial isostasy and the surface of the ice age earth: the ICE-5G (VM2) Model and GRACE. Annu Rev Earth Planet Sci, 2004, 32: 111–149CrossRefGoogle Scholar
  24. 24.
    Ivins E R, James T S. Antarctic glacial isostatic adjustment: A new assessment. Antarc Sci, 2005, 17: 541–553CrossRefGoogle Scholar
  25. 25.
    Velicogna I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheet revealed by GRACE. Geophys Res Lett, 2009, 36: L19503CrossRefGoogle Scholar
  26. 26.
    Wang H S, Wu Patrick, van der Wal Wouter, et al. Glacial isostatic adj ustment model constrained by geodetic measurements and relative sea level (in Chinese). Chin J Geophys, 2009, 52: 2450–2460Google Scholar
  27. 27.
    Rodell M, Houser P R, Jambor U, et al. The Global and Land Data Assimilation system. Bull Amer Meteorol Soc, 2004, 85: 381–394CrossRefGoogle Scholar
  28. 28.
    Chen J L, Rodell M, Wilson C R, et al. Low degree spherical harmonic influence on GRACE water storage estimates. Geophys Res Lett, 2005, 32: L14405CrossRefGoogle Scholar
  29. 29.
    Chen J L, Wilson C R, Blankenship D, et al. Accelerated Antarctic ice loss from satellite gravity measurement. Nature Geosci, 2009, 22, doi: 10.1038/NGE0694Google Scholar
  30. 30.
    Shum C K, Kuo C Y, Guo J Y. Role of Antarctic ice mass balance in present-day sea-level changes. Polor Sci, 2008, 2: 149–161CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • ZhiCai Luo
    • 1
    • 2
    • 3
    Email author
  • Qiong Li
    • 1
  • Kun Zhang
    • 1
  • HaiHong Wang
    • 1
    • 2
  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Geospace Environment and GeodesyMinistry of EducationWuhanChina
  3. 3.State Key Laboratory of Information Engineering in SurveyingMapping and Remote SensingWuhanChina

Personalised recommendations