Science China Earth Sciences

, 54:1400 | Cite as

Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach

  • CongBin Fu
  • Cheng Qian
  • ZhaoHua Wu
Research Paper


The Fourth Assessment Report (AR4) of the Intergovernmental Panel of Climate Change (IPCC) concluded that the climate projection using climate models that took account of both human and natural factors provided credible quantitative estimates of future climate change; however, the mismatches between the IPCC AR4 model ensembles and the observations, especially the multi-decadal variability (MDV), have cast shadows on the confidence of the model-based decadal projections of future climate. This paper reports an evaluation of many individual runs of AR4 models in the simulation of past global mean temperature. We find that most of the individual model runs fail to reproduce the MDV of past climate, which may have led to the overestimation of the projection of global warming for the next 40 years or so. Based on such an evaluation, we propose an alternative approach, in which the MDV signal is taken into account, to project the global mean temperature for the next 40 years and obtain that the global warming during 2011–2050 could be much smaller than the AR4 projection.


decadal prediction global warming multi-decadal climate variability the Ensemble Empirical Mode Decomposition CMIP3 multi-model 


  1. 1.
    IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2007. 996Google Scholar
  2. 2.
    Knight J, Kennedy J J, Folland C, et al. Do global temperature trends over the last decade falsify climate predictions? Bull Amer Meteorol Soc, 2009, 90: S22–S23Google Scholar
  3. 3.
    Kerr R A. What happened to global warming? Scientists say just wait a bit. Science, 2009, 326: 28–29CrossRefGoogle Scholar
  4. 4.
    Lean J L, Rind D H. How will Earth’s surface temperature change in future decades? Geophys Res Lett, 2009, 36: L15708, doi: 10.1029/2009GL038932CrossRefGoogle Scholar
  5. 5.
    Meehl G A, Goddard L, Murphy J, et al. Decadal prediction: Can it be skillful? Bull Amer Meteorol Soc, 2009, 90: 1467–1485CrossRefGoogle Scholar
  6. 6.
    Meehl G A, Stocker T F, Collins W D, et al. Global climate projections. In: Solomon S, Qin D H, Manning M, et al., eds. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007Google Scholar
  7. 7.
    Schlesinger M E, Ramankutty N. An oscillation in the global climate system of period 65–70 years. Nature, 1994, 367: 723–726CrossRefGoogle Scholar
  8. 8.
    Kerr R A. A North Atlantic climate pacemaker for the centuries. Science, 2000, 288: 1984–1986CrossRefGoogle Scholar
  9. 9.
    Enfield D B, Mestas-Nuñez A M, Trimble P J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett, 2001, 28: 2077–2080CrossRefGoogle Scholar
  10. 10.
    Knight J R, Allan R J, Folland C K, et al. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett, 2005, 32: L20708, doi: 10.1029/2005GL024233CrossRefGoogle Scholar
  11. 11.
    Zhang R, Delworth T L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett, 2006, 33: L17712, doi: 10.1029/2006GL026267CrossRefGoogle Scholar
  12. 12.
    Zhang R, Delworth T L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett, 2007, 34: L23708, doi: 10.1029/2007GL031601CrossRefGoogle Scholar
  13. 13.
    Zhang R, Delworth T L, Held I M. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett, 2007, 34: L02709, doi: 10.1029/2006 GL028683CrossRefGoogle Scholar
  14. 14.
    Kravtsov S V, Spannagle C. Multi-decadal climate variability in observed and modeled surface temperatures. J Clim, 2008, 21: 1104–1121CrossRefGoogle Scholar
  15. 15.
    Ting M, Kushnir Y, Seager R, et al. Forced and internal twentieth-century SST trends in the North Atlantic. J Clim, 2009, 22: 1469–1481CrossRefGoogle Scholar
  16. 16.
    Wu Z, Huang N E, Wallace J M, et al. On the time-varying trend in global-mean surface temperature. Clim Dyn, 2011, doi: 10.1007/ s00382-011-1128-8Google Scholar
  17. 17.
    Qian W H, Lu B, Zhu C W. How would global-mean temperature change in the 21st century? Chin Sci Bull, 2010, 55: 1–5CrossRefGoogle Scholar
  18. 18.
    Keenlyside N S, Latif M, Jungclaus J, et al. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 2008, 453: 84–88CrossRefGoogle Scholar
  19. 19.
    Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes: new dataset from 1850. J Geophys Res, 2006, 111: D12106, doi: 10.1029/2005 JD006548CrossRefGoogle Scholar
  20. 20.
    Zhou T, Yu R. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J Clim, 2006, 19: 5843–5858CrossRefGoogle Scholar
  21. 21.
    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc A-Math Phys Eng Sci, 1998, 454: 903–995CrossRefGoogle Scholar
  22. 22.
    Huang N E, Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev Geophys, 2008, 46: RG2006, doi: 10.1029/2007RG000228CrossRefGoogle Scholar
  23. 23.
    Wu Z, Huang N E. Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal, 2009, 1: 1–41CrossRefGoogle Scholar
  24. 24.
    Wu Z, Huang N E, Long S R, et al. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 2007, 104: 14889–14894CrossRefGoogle Scholar
  25. 25.
    Wu Z, Schneider E K, Kirtman B P, et al. The modulated annual cycle: An alternative reference frame for climate anomalies. Clim Dyn, 2008, 31: 823–841CrossRefGoogle Scholar
  26. 26.
    Qian C, Fu C, Wu Z, et al. On the secular change of spring onset at Stockholm. Geophys Res Lett, 2009, 36: L12706, doi: 10.1029/2009GL038617CrossRefGoogle Scholar
  27. 27.
    Franzke C. Long-range dependence and climate noise characteristics of Antarctic temperature data. J Clim, 2010, 23: 6074–6081CrossRefGoogle Scholar
  28. 28.
    Stott P A, Tett S F B, Jones G S, et al. External control of 20th century temperature by natural and anthropogenic forcings. Science, 2000, 290: 2133–2137CrossRefGoogle Scholar
  29. 29.
    Semenov V A, Latif M, Dommenget D, et al. The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. J Clim, 2010, 23: 5668–5677CrossRefGoogle Scholar
  30. 30.
    Del Sole T, Tippett M K, Shukla J. A significant component of unforced multidecadal variability in twentieth century global warming. J Clim, 2011, doi: 10.1175/2010JCLI3659.1Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Climate and Global Change Research, School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Earth, Ocean, and Atmospheric Science & Center for Ocean-Atmospheric Prediction StudiesFlorida State UniversityTallahasseeUSA

Personalised recommendations