Science China Earth Sciences

, Volume 54, Issue 2, pp 157–165 | Cite as

Exploring the deep biosphere



Over the past two decades, scientific drilling into sediments and rocks in the ocean and the continent has revealed the presence of physiologically and phylogenetically complex microbial life in the deep subsurface. Microorganisms, most of which have no cultured or known relatives in the surface biosphere, have been discovered in sediments and rock at depth as deep as 1 km below the seafloor and more than 3 km deep in the continent. The deep biosphere probably represents the most voluminous part of the global biosphere and may constitute as much as 50% of the Earth’s biomass. In this article, we review the current knowledge of and most recent advances in studying the deep biosphere and suggest directions in future research.


deep biosphere Thomas Gold microorganism biomass DNA ribosome ODP CARD-FISH dark energy lipids serpentinization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gold T. The deep, hot biosphere. Proc Natl Acad Sci USA, 1992, 89: 6045–6049CrossRefGoogle Scholar
  2. 2.
    Gold T. The Deep Hot Biosphere. New York: Copernicus (imprint of Springer-Verlag), 1999. 243Google Scholar
  3. 3.
    Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA, 1998, 95: 6578–6583CrossRefGoogle Scholar
  4. 4.
    Edwards K J. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor. Trends Microbiol, 2005, 13: 449–456CrossRefGoogle Scholar
  5. 5.
    Jørgensen B B, D’Hondt S. A starving majority deep beneath the seafloor. Science, 2006, 314: 932–934CrossRefGoogle Scholar
  6. 6.
    Kieft T L, Phelps T J. Life in the slow lane. In: Amy P S, Haldeman D L, eds. The Microbiology of the Terrestrial Subsurface. Boca Raton: CRC Press, 1997. 137–164Google Scholar
  7. 7.
    Pedersen K. Microbial life in deep granitic rock. FEMS Microbiol Rev, 1997, 20: 399–414CrossRefGoogle Scholar
  8. 8.
    Pedersen K. Exploration of deep intraterrestrial microbial life: Current perspectives. FEMS Microbiol Lett, 2000, 185: 9–16CrossRefGoogle Scholar
  9. 9.
    Fredrickson J K, Onstott T C. Biogeochemical and geological significance of subsurface microbiology. In: Fredrickson J K, Fletcher M, eds. Subsurface Microbiology and Biogeochemistry. New York: Wiley-Liss, 2001. 3–37Google Scholar
  10. 10.
    Krumholz L. Microbial communities in the deep subsurface. Hydrogeol J, 2000, 8: 4–10Google Scholar
  11. 11.
    Parkes R J, Cragg B A, Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol J, 2000, 8: 11–28CrossRefGoogle Scholar
  12. 12.
    Parkes R J, Wellsbury P. Deep biospheres. In: Bull A T, ed. Microbial Diversity and Bioprospecting. Washington DC: ASM Press, 2004. 120–129Google Scholar
  13. 13.
    Jørgensen B B, D’Hondt S. A starving majority deep beneath the seafloor. Science, 2006, 314: 932–935CrossRefGoogle Scholar
  14. 14.
    Jørgensen B B, Boetius A. Feast and famine-Microbial life in the deep-sea bed. Nature Rev Microbiol, 2007, 5: 770–781CrossRefGoogle Scholar
  15. 15.
    Parkes R J, Wellsbury P, Mather I D, et al. Temperature activation of organic matter and minerals during burial has the potential to sustain the deep biosphere over geological timescales. Org Geochem, 2007, 38: 845–852CrossRefGoogle Scholar
  16. 16.
    Teske T, Sørensen K B. Uncultured archaea in deep marine subsur face sediments: Have we caught them all? ISME J, 2008, 2: 3–18CrossRefGoogle Scholar
  17. 17.
    Onstott T C. New horizons for deep subsurface microbiology. Microbe, 2009, 4: 499–505Google Scholar
  18. 18.
    Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges. C R Geosci, 2003, 335: 825–852CrossRefGoogle Scholar
  19. 19.
    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 1996, 24: 191–224CrossRefGoogle Scholar
  20. 20.
    Fisk M R, Giovannoni S J, Thorseth I H. Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science, 1998, 281: 978–980CrossRefGoogle Scholar
  21. 21.
    Bach W, Humphris S, Fisher A. Fluid flow and fluid-rock interaction within the oceanic crust: Reconciling geological, geochemical, and geophysical observations. In: Wilcock W S D, DeLong E F, Kelley D S, et al, eds. The Subseafloor Biosphere at Mid-Ocean Ridges. Washington DC: American Geophysical Union, 2004. 99–117Google Scholar
  22. 22.
    Teske A P. Microbial communities of seep marine subsurface sediments: Molecular and cultivation surveys. Geomicrobiol J, 2006, 23: 357–368CrossRefGoogle Scholar
  23. 23.
    Johnson H P, Pruis M J. Fluxes of fluid and heat from the oceanic crustal reservoir. Earth Planet Sci Lett, 2003, 216: 565–574CrossRefGoogle Scholar
  24. 24.
    Wheat C G, Jannasch H W, Kastner M, et al. Seawater transport and reaction in upper oceanic basaltic basement: Chemical data from continuous monitoring of sealed boreholes in a midocean ridge flank environment. Earth Planet Sci Lett, 2003, 216: 549–564CrossRefGoogle Scholar
  25. 25.
    Bach W, Edwards K J. Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta, 2003, 67: 3871–3887CrossRefGoogle Scholar
  26. 26.
    Cowen J P. Fluids from aging ocean crust that support microbial life. Science, 2003, 203: 120–123CrossRefGoogle Scholar
  27. 27.
    Amend J P, Teske A. Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 219: 131–155CrossRefGoogle Scholar
  28. 28.
    Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 1994, 371: 410–413CrossRefGoogle Scholar
  29. 29.
    D’Hondt S. Metabolic activity of subsurface life in deep-sea sediments. Science, 2002, 295: 2067–2070CrossRefGoogle Scholar
  30. 30.
    D’Hondt S. Distributions of microbial activities in deep subseafloor sediments. Science, 2004, 306: 2216–2221CrossRefGoogle Scholar
  31. 31.
    Bach W, Edwards K J, Hayes J M, et al. Energy in the Dark: Fuel for life in the deep ocean and beyond. EOS Trans AGU, 2006, 87:73CrossRefGoogle Scholar
  32. 32.
    Schippers A, Neretin L N, Kallmeyer J, et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 2005, 433: 861–864CrossRefGoogle Scholar
  33. 33.
    Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA, 2006, 103: 3846–3851CrossRefGoogle Scholar
  34. 34.
    Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 2006, 103: 2815–2820CrossRefGoogle Scholar
  35. 35.
    Santelli C M, Orcutt B N, Banning E, et al. Abundance and diversity of microbial life in ocean crust. Nature, 2008, 453: 653–656CrossRefGoogle Scholar
  36. 36.
    Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA, 2008, 105: 10949–10954CrossRefGoogle Scholar
  37. 37.
    Wellsbury P. Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol, 2002, 42: 59–70CrossRefGoogle Scholar
  38. 38.
    Davis B D, Luger S M, Tai P C. Role of ribosome degradation in the death of starved Escherichia coli cells. J Bacteriol, 1986, 166: 439–445Google Scholar
  39. 39.
    Roussel E G, Bonavita M A C, Querellou J, et al. Extending the sub-sea-floor biosphere. Science, 2008, 320: 1046CrossRefGoogle Scholar
  40. 40.
    Engelen B, Ziegelmuller K, Wolf L, et al. Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiol J, 2008, 25: 56–66CrossRefGoogle Scholar
  41. 41.
    Holland M E, Baross J A. Limits of life in hydrothermal systems. In: Halbach P E, Tunnicliffe V, Hein J R, eds. Energy and Mass Transfer in Marine Hydrothermal Systems. Berlin: Dahlem University Press, 2003. 235–248Google Scholar
  42. 42.
    Cowan J P. The microbial biosphere of the sediment-buried oceanic basement. Res Microbiol, 2004, 155: 497–506CrossRefGoogle Scholar
  43. 43.
    Cypionka H. Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 2000, 54: 827–848CrossRefGoogle Scholar
  44. 44.
    Amend J P, Shock E L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev, 2000, 25: 175–243CrossRefGoogle Scholar
  45. 45.
    Burdige D J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets. Chem Rev, 2007, 107: 467–485CrossRefGoogle Scholar
  46. 46.
    Schulte M, Blake D, Hoehler T, et al. Serpentinization and its implications for life on the early Earth and Mars. Astrobiology, 2006, 2: 364–376CrossRefGoogle Scholar
  47. 47.
    Cardace D, Hoehler T M. Serpentinizing fluids craft microbial habitat. Northeast Nat, 2009, 16: 272–284CrossRefGoogle Scholar
  48. 48.
    Hostetler P B, Coleman R G, Mumpton F A, et al. Brucite in alpine serpentinites. Am Mineral, 1966, 51: 75–98Google Scholar
  49. 49.
    Lin L H, Slater G F, Sherwood L B, et al. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim Cosmochim Acta, 2005, 69: 893–903CrossRefGoogle Scholar
  50. 50.
    Schwarz E, Friedrich B. The H2-metabolizing prokaryotes. In: Dworkin M, ed. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. 3rd ed. New York: Springer-Verlag, 2003. Google Scholar
  51. 51.
    Stevens T O, McKinley J P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 1995, 270: 450–454CrossRefGoogle Scholar
  52. 52.
    Chapelle F H, O’Neill K, Bradley P M, et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 2002, 415: 312–315CrossRefGoogle Scholar
  53. 53.
    Lin L H, Wang P L, Rumble D, et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science, 2006, 314: 479–482CrossRefGoogle Scholar
  54. 54.
    Amend J P, Rogers K L, Shock E L, et al. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology, 2003, 1: 37–58CrossRefGoogle Scholar
  55. 55.
    Fang J, Bazylinski D A. Deep-sea geomicrobiology and biogeochemistry. In: Michiels C, Bartlett D H, Aertsen A, eds. High-Pressure Microbiology. Washington DC: American Society for Microbiology, 2008. 219–264Google Scholar
  56. 56.
    Fang J, Zhang L, Bazylinski D A. Deep-sea piezosphere and piezophiles: Geomicrobiology and biogeochemistry. Trends Microbiol, 2010, 18: 413–422CrossRefGoogle Scholar
  57. 57.
    Gold T, Soter S. Abiogenic methane and the origin of petroleum. Energy Explor Exploit, 1982, 1: 89–104Google Scholar
  58. 58.
    Shock E L. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosph, 1990, 20: 331–367CrossRefGoogle Scholar
  59. 59.
    McCollom T M, Ritter G, Simoneit B R T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph, 1999, 29: 153–166CrossRefGoogle Scholar
  60. 60.
    Wheat C G, Elderfield H, Mottl M J, et al. Chemical composition of basement fluids within an oceanic ridge flank: Implications for along-strike and across-strike hydrothermal circulation. J Geophys Res, 2000, 105: 13437–13447CrossRefGoogle Scholar
  61. 61.
    Fang J, Barcelona M J. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods, 1998, 33: 23–35CrossRefGoogle Scholar
  62. 62.
    Lipp J S, Hinrichs K U. Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta, 2009, 73: 6816–6833CrossRefGoogle Scholar
  63. 63.
    Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol, 2002, 68: 3094–3101CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
  2. 2.College of Natural and Computational SciencesHawaii Pacific UniversityKaneoheUSA
  3. 3.State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations