Science China Earth Sciences

, Volume 54, Issue 5, pp 720–732 | Cite as

Three Gorges Dam stability monitoring with time-series InSAR image analysis

  • Teng Wang
  • Daniele Perissin
  • Fabio Rocca
  • Ming-Sheng Liao
Research Paper


In this paper, we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam. For the first time, we measured and analyzed the deformation of the Three Gorges Dam and its surrounding area using 40 SAR images acquired from 2003 to 2008. Our results indicate that the temporal deformation of the left part of the dam has ceased and that the deformation of the dam was influenced by the changing level of the Yangtze River. Seasonal deformation due to varying temperature is also observed. The obtained results agree well with the published results of the Three Gorges Dam deformation obtained by employing conventional survey methods. We also found that there is an area of abnormal subsidence near Zigui County. This paper demonstrates the potential of time-series InSAR image analysis in the monitoring of dam stability and measurement of subsidence.


Three Gorges Project deformation monitoring InSAR permanent scatterer analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li Q, Zhao X, Cai J A, et al. P wave velocity structure of upper and middle crust beneath the Three Gorges reservoir dam and adjacent regions. Sci China Ser D-Earth Sci, 2009, 52: 567–578CrossRefGoogle Scholar
  2. 2.
    Fourniadis I G, Liu J G, Mason P J. Regional assessment of landslide impact in the three gorges area, China, using ASTER data: Wushan-Zigui. Landslides, 2007, 4: 267–278CrossRefGoogle Scholar
  3. 3.
    Shen C, Sun S, Liu S, et al. Dynamic variations of gravity field in head area of Three Gorges reservoir in recent years (in Chinese). J Geod Geodyn, 2004, 24: 6–13Google Scholar
  4. 4.
    Yang J, Wu Z. Present conditions and development of dam safety monitoring and control researches home and abroad (in Chinese). J Xi’an Univ Technol, 2002, 18: 26–30Google Scholar
  5. 5.
    Yan J, Li S. Optimization design of deformation monitoring for TGP’s dam (in Chinese). Yangtze River, 2002, 33: 36–38Google Scholar
  6. 6.
    Li Z, Liu Z, Wang Z. GPS in dam deformation monitoring (in Chinese). J Wuhan Univ Hydraulic Electr Eng, 1996, 29: 26–29Google Scholar
  7. 7.
    Guo H. Theory and Application of Earth Observation with Radar (in Chinese). Beijing: Science Press, 2000Google Scholar
  8. 8.
    Liao M, Lin H. Synthetic Aperture Radar Interferometry—Principle and Signal Processing (in Chinese). Beijing: Survey Press, 2003Google Scholar
  9. 9.
    Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry. Proc IEEE, 2000, 88: 333–382CrossRefGoogle Scholar
  10. 10.
    Hanssen R F. Radar Interferometry Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers, 2001Google Scholar
  11. 11.
    Madsen S, Zebker H, Martin J. Topographic mapping using radar interferometry: Processing techniques. IEEE Trans Geosci Remote Sens, 1993, 31: 246–256CrossRefGoogle Scholar
  12. 12.
    Liao M, Wang T, Lu L, et al. Reconstruction of DEMs from ERS-1/2 tandem data in mountainous area facilitated by SRTM data. IEEE Trans Geosci Remote Sens, 2007, 45: 2325–2335CrossRefGoogle Scholar
  13. 13.
    Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry. J Geophys Res, 1989, 94: 9183–9191CrossRefGoogle Scholar
  14. 14.
    Wang C, Zhang H, Shan X, et al. Application SAR interferometry for ground deformation detection in China. Photogramm Eng Remote Sens, 2004, 70: 1157–1166Google Scholar
  15. 15.
    Ge, L, Chang H, Rizos C. Mine subsidence monitoring ssing multi-source satellite SAR images. Photogramm Eng Remote Sens, 2007, 73: 259–266Google Scholar
  16. 16.
    Zebker H. On the derivation of coseismic displacement fields using differential radar interferometry: The landers earthquake. J Geophys Res, 1994, 99: 19617–19634CrossRefGoogle Scholar
  17. 17.
    Shan X J, Ma J, Wang C L, et al. Co-seismic ground deformation and source parameters of Mani M7.9 earthquake inferred from spaceborne D-InSAR observation data. Sci China Ser D-Earth Sci, 2004, 47: 481–488CrossRefGoogle Scholar
  18. 18.
    Zebker H, Villasenor A J. Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens, 1992, 30: 950–959CrossRefGoogle Scholar
  19. 19.
    Goldstein R. Atmospheric limitations to repeat-pass interferometry. Geophys Res Lett, 1995, 22: 2517–2520CrossRefGoogle Scholar
  20. 20.
    Ding X, Li Z, Zhu J, et al. Atmospheric effects on InSAR measurements and their mitigations. Sensors, 2008, 8: 5426–5448CrossRefGoogle Scholar
  21. 21.
    Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens, 2001, 39: 8–20CrossRefGoogle Scholar
  22. 22.
    Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens, 2000, 38: 2202–2212CrossRefGoogle Scholar
  23. 23.
    Colesanti C, Ferretti A, Novali F, et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans Geosci Remote Sens, 2003, 41: 1685–1701CrossRefGoogle Scholar
  24. 24.
    Perissin D, Prati C, Engdahl M E, et al. Validating the SAR wavenumber shift principle with the ERS Envisat PS coherent combination. IEEE Trans Geosci Remote Sens, 2006, 44: 2343–2351CrossRefGoogle Scholar
  25. 25.
    Ferretti A, Savio G, Barzaghi R, et al. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans Geosci Remote Sens, 2007, 45: 1142–1153CrossRefGoogle Scholar
  26. 26.
    Perissin D. Validation of the sub-metric accuracy of vertical positioning of PS’s in C Band. IEEE Lett Geosci Remote Sens, 2008, 5: 502–506CrossRefGoogle Scholar
  27. 27.
    Wang Y, Liao M, Li D, et al. Subsidence velocity retrieval from long term coherent targets in radar interferometric stacks (in Chinese). Chin J Geophys, 2007, 50: 598–604Google Scholar
  28. 28.
    Perissin D, Rocca F. High-accuracy urban DEM using permanent scatterers. IEEE Trans Geosci Remote Sens, 2006, 44: 3338–3347CrossRefGoogle Scholar
  29. 29.
    Perissin D, Ferretti A. Urban target recognition by means of repeated spaceborne SAR Images. IEEE Trans Geosci Remote Sens, 2007, 45: 4043–4058CrossRefGoogle Scholar
  30. 30.
    Kampes B M. Radar Interferometry Persistent Scatterer Technique. Dordrecht: Springer, 2006.Google Scholar
  31. 31.
    Hooper A, Segall P, Zebker H. Persistent scatterer interferometric synthetic aperture radar for Crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res, 2007, 112: B07407, doi: 10.1029/2006JB004763CrossRefGoogle Scholar
  32. 32.
    Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens, 2003, 41: 2243–2253CrossRefGoogle Scholar
  33. 33.
    Perissin D, Ferretti A, Piantanida R, et al. Repeat-pass SAR interferometry with partially coherent targets. Fringe 2007, Frascati (Italy), 26–30 November, 2007Google Scholar
  34. 34.
    Hilley G, Burgmann R, Ferretti A, et al. Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 2004, 304: 1952–1955CrossRefGoogle Scholar
  35. 35.
    Wang T, Perissin D, Liao M, et al. Deformation monitoring by long term D-InSAR Analysis in Three Gorges area, China. Geoscience and Remote Sensing Symposium, IEEE International, 2008Google Scholar
  36. 36.
    Dai H, Su H. Stability against sliding in intake dam section of Yangtze River Three Gorges Project (in Chinese). Rock Soil Mechanics, 2006, 27: 643–647Google Scholar
  37. 37.
    Touzi R, Lopes A, Bruniquel J, et al. Coherence estimation for SAR imagery. IEEE Trans Geosci Remote Sens, 1999, 37: 135–149CrossRefGoogle Scholar
  38. 38.
    Biggs N L. Discrete Mathematics. Oxford: Claredon Press, 1985Google Scholar
  39. 39.
    Zebker H, Chen K. Accurate estimation of correlation in InSAR observations. IEEE Lett Geosci Remote Sens, 2005, 2: 124–127CrossRefGoogle Scholar
  40. 40.
    Gatelli F, Guamieri A M, Parizzi F, et al. The wavenumber shift in SAR inferometry. IEEE Trans Geosci Remote Sens, 1994, 32: 855–865CrossRefGoogle Scholar
  41. 41.
    Liu G. Geology engineering overview of the Three Gorges Project (in Chinese). Hydrogeol Eng Geol, 1993, 20: 56–57Google Scholar
  42. 42.
    Huang S, Yin H, Jiang Z. Deformation Monitoring Data Processing (in Chinese). Wuhan: Wuhan University Press, 2004Google Scholar
  43. 43.
    Liao M, Tian X, Zhao Q. Missions and applications of TerraSAR- X/Tandem-X (in Chinese). J Geomatics, 2007, 32: 44–46Google Scholar
  44. 44.
    Soergel U, Thoennessen U, Brenner A, et al. High-resolution SAR data: New opportunities and challenges for the analysis of urban areas. IEEE Proc Radar Sonar Navigation, 2006, 153: 294–300CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Teng Wang
    • 1
    • 2
  • Daniele Perissin
    • 3
    • 2
  • Fabio Rocca
    • 2
  • Ming-Sheng Liao
    • 1
  1. 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanItaly
  3. 3.Institute of Space and Earth Information ScienceChinese University of Hong KongHong KongChina

Personalised recommendations