Science China Earth Sciences

, Volume 53, Issue 12, pp 1836–1848 | Cite as

Cranial morphology of the Silurian sarcopterygian Guiyu oneiros (Gnathostomata: Osteichthyes)

  • Tuo Qiao
  • Min Zhu
Research Paper


Cranial morphological features of the stem-group sarcopterygian Guiyu oneiros Zhu et al., 2009 provided here include the dermal bone pattern and anatomical details of the ethmosphenoid. Based on those features, we restored, for the first time, the skull roof bone pattern in the Guiyu clade that comprises Psarolepis and Achoania. Comparisons with Onychodus, Achoania, coelacanths, and actinopterygians show that the posterior nostril enclosed by the preorbital or the preorbital process is shared by actinopterygians and sarcopterygians, and the lachrymals in sarcopterygians and actinopterygians are not homologous. The endocranium closely resembles that of Psarolepis, Achoania and Onychodus; however, the attachment area of the vomer possesses irregular ridges and grooves as in Youngolepis and Diabolepis. The orbito-nasal canal is positioned mesial to the nasal capsule as in Youngolepis and porolepiforms. The position of the hypophysial canal at the same level or slightly anterior to the ethmoid articulation represents a synapmorphy of the Guiyu clade. The large attachment area of the basicranial muscle indicates the presence of a well-developed intracranial joint in Guiyu.


Sarcopterygii Osteichthyes Cranial morphology homology Silurian China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhu M, Zhao W J, Jia L T, et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 2009, 458: 469–474CrossRefGoogle Scholar
  2. 2.
    Coates M I. Beyond the age of fishes. Nature, 2009, 458: 413–414CrossRefGoogle Scholar
  3. 3.
    Gross W. Fragliche Actinopterygier-Schuppen aus dem Silur Gotlands. Lethaia, 1968, 1: 184–218CrossRefGoogle Scholar
  4. 4.
    Gross W. Lophosteus superbus Pander, ein Teleostome aus dem Silur Oesels. Lethaia, 1969, 2: 15–47CrossRefGoogle Scholar
  5. 5.
    Gross W. Lophosteus superbus Pander: Zähne, Zahnknochen und besondere Schuppenformen. Lethaia, 1971, 4: 131–152CrossRefGoogle Scholar
  6. 6.
    Janvier P. On the oldest known teleostome fish Andreolepis hedei Gross (Ludlow of Gotland), and the systematic position of the lophosteids. Eesti NSV Teaduste Akad Toimetised Geol, 1978, 27: 88–95Google Scholar
  7. 7.
    Otto M. Zur systematischen Stellung der Lophosteiden (Obersilur, Pisces inc. sedis). Paläontol Z, 1991, 65: 345–350Google Scholar
  8. 8.
    Schultze H P. Ausgangsform und Entwicklung der rhombischen Schuppen der Osteichthyes (Pisces). Paläontol Z, 1977, 51: 152–168Google Scholar
  9. 9.
    Schultze H P, Märss T. Revisiting Lophosteus Pander 1856, a primitive osteichthyan. In: The Gross Symposium 2: Advances in Palaeoichthyology. Acta Universitat Latvien, 2004, 679: 57–78Google Scholar
  10. 10.
    Botella H, Blom H, Dorka M, et al. Jaws and teeth of the earliest bony fishes. Nature, 2007, 448: 583–586CrossRefGoogle Scholar
  11. 11.
    Zhu M, Yu X B, Janvier P. A primitive fossil fish sheds light on the origin of bony fishes. Nature, 1999, 397: 607–610CrossRefGoogle Scholar
  12. 12.
    Basden A M, Young G C, Coates M I, et al. The most primitive osteichthyan braincase? Nature, 2000, 403: 185–188CrossRefGoogle Scholar
  13. 13.
    Zhu M, Yu X B, Ahlberg P E. A primitive sarcopterygian fish with an eyestalk. Nature, 2001, 410: 81–84CrossRefGoogle Scholar
  14. 14.
    Schultze H P, Cumbaa S L. Dialipina and the characters of basal actinopterygians. In: Ahlberg P E, ed. Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny and Development. London: Taylor & Francis, 2001. 315–332Google Scholar
  15. 15.
    Ahlberg P E. Something fishy in the family tree. Nature, 1999, 397: 564–565CrossRefGoogle Scholar
  16. 16.
    Chang M M. Fossil fish up for election. Nature, 2000, 403: 152–153CrossRefGoogle Scholar
  17. 17.
    Brazeau M D. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature, 2009, 457: 305–308CrossRefGoogle Scholar
  18. 18.
    Westoll T S. The origin of the tetrapods. Biol Rev, 1943, 18: 78–98CrossRefGoogle Scholar
  19. 19.
    Yu X B. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. J Vertebr Paleontol, 1998, 18: 261–274CrossRefGoogle Scholar
  20. 20.
    Andrews S M, Long J A, Ahlberg P E, et al. The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: With a functional interpretation of the skeleton. Trans R Soc Edinb, 2006, 96: 197–307Google Scholar
  21. 21.
    Lu J, Zhu M. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proc R Soc B, 2010, 277: 293–299CrossRefGoogle Scholar
  22. 22.
    Jarvik E. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp., and a discussion on the structure of the head in the Porolepiformes. Meddelelser om Grønland, 1972, 187: 1–307Google Scholar
  23. 23.
    Zhu M, Yu X B, Wang W, et al. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature, 2006, 441: 77–80CrossRefGoogle Scholar
  24. 24.
    Gardiner B G. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull Br Mus Nat Hist, 1984, 37: 173–428Google Scholar
  25. 25.
    Zhu M, Yu X B. Lower jaw character transitions among major sarcopterygian groups-A survey based on new materials from Yunnan, China. In: Arratia G, Wilson M V H, Cloutier R, eds. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil, 2004. 271–286Google Scholar
  26. 26.
    Long J A. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of Victoria. Mem Assoc Australas Palaeontol, 1988, 7: 1–64Google Scholar
  27. 27.
    Friedman M, Blom H. A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes. J Paleontol, 2006, 80: 1186–1204CrossRefGoogle Scholar
  28. 28.
    Pearson D M, Westoll T S. The Devonian actinopterygian Cheirolepis Agassiz. Trans R Soc Edinb, 1979, 70: 337–399Google Scholar
  29. 29.
    Schultze H P. Early Devonian actinopterygians (Osteichthyes, Pisces) from Siberia. In: Mark-Kurik E, ed. Fossil Fishes as Living Animals. Tallinn: Academy of Sciences of Estonia, 1992. 233–242Google Scholar
  30. 30.
    Richter M, Smith M M. A microstructural study of the ganoine tissue of selected lower vertebrates. Zool J Linn Soc, 1995, 114: 173–212CrossRefGoogle Scholar
  31. 31.
    Zhu M, Schultze H P. The oldest sarcopterygian fish. Lethaia, 1997, 30: 293–304Google Scholar
  32. 32.
    Chang M M. The Braincase of Youngolepis, A Lower Devonian Crossopterygian from Yunnan, South-western China. Stockholm: University of Stockholm, Department of Geology, 1982Google Scholar
  33. 33.
    Jessen H L. A new choanate fish, Powichthys thorsteinssoni n. g., n. sp., from the Early Lower Devonian of the Canadian Arctic Archipelago. Colloques int Cent Natn Rech Scient, 1975, 218: 213–222Google Scholar
  34. 34.
    Jessen H L. Lower Devonian Porolepiformes from the Canadian Arctic with special reference to Powichthys thorsteinssoni Jessen. Palaeontogr A, 1980, 167: 180–214Google Scholar
  35. 35.
    Zhu M, Yu X B. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature, 2002, 418: 767–770CrossRefGoogle Scholar
  36. 36.
    Kulczycki J. Porolepis (Crossopterygii) from the Lower Devonian of the Holy Cross Mountains. Acta Palaeontol Pol, 1960, 5: 65–106Google Scholar
  37. 37.
    Jarvik E. On the structure of the snout of crossopterygians and lower gnathostomes in general. Zool Bidrag Från Uppsal, 1942, 21: 235–675Google Scholar
  38. 38.
    Long J A, Barwick R E, Campbell K S W. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Rec West Aust Mus, 1997, 53(Suppl): 1–89Google Scholar
  39. 39.
    Chang M M, Yu X B. Structure and phylogenetic significance of Diabolichthys speratus gen. et sp. nov., a new dipnoan-like form from the Lower Devonian of eastern Yunnan, China. Proc Linn Soc N S W, 1984, 107: 171–184Google Scholar
  40. 40.
    Chang M M. Diabolepis and its bearing on the relationships between porolepiforms and dipnoans. Bull Mus Nat d’Histoire Naturelle Paris 4e Sér Sec C, 1995, 17: 235–268Google Scholar
  41. 41.
    Chang M M. Synapomorphies and scenarios-More characters of Youngolepis betraying its affinity to the Dipnoi. In: Arratia G, Wilson M V H, Cloutier R, eds. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil, 2004. 665–686Google Scholar
  42. 42.
    Clément G, Janvier P. Powichthys spitsbergensis sp. nov., a new member of the Dipnomorpha (Sarcopterygii, lobe-finned fishes) from the Lower Devonian of Spitsbergen, with remarks on basal dipnomorph anatomy. Fossils Strat, 2004, 50: 92–112Google Scholar
  43. 43.
    Jarvik E. The Devonian tetrapod Ichthyostega. Fossils Strat, 1996, 40: 1–213Google Scholar
  44. 44.
    Clack J A. Acanthostega gunnari, a Devonian tetrapod from Greenland: The snout, palate and ventral parts of the braincase. Meddelelser Grønland Geosci, 1994, 31: 1–24Google Scholar
  45. 45.
    Basden A M, Young G C. A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J Vertebr Paleontol, 2001, 21: 754–766CrossRefGoogle Scholar
  46. 46.
    Chang M M, Zhu M. A new Middle Devonian osteolepidid from Qujing, Yunnan. Mem Assoc Australas Palaeontol, 1993, 15: 183–198Google Scholar
  47. 47.
    Zhu M, Ahlberg P E. The origin of the internal nostril of tetrapods. Nature, 2004, 432: 94–97CrossRefGoogle Scholar
  48. 48.
    Long J A. A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group. J Vertebr Paleontol, 1989, 9: 1–17CrossRefGoogle Scholar
  49. 49.
    Johanson Z, Ahlberg P E. A complete primitive rhizodont from Australia. Nature, 1998, 394: 569–573CrossRefGoogle Scholar
  50. 50.
    Johanson Z, Ahlberg P E. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodmorpha) from East Gondwana. Trans R Soc Edinb, 2001, 92: 43–74Google Scholar
  51. 51.
    Andrews S M. Interrelationships of crossopterygians. In: Greenwood P H, Miles R S, Patterson C, eds. Interrelationships of Fishes. London: Academic Press, 1973. 137–177Google Scholar
  52. 52.
    Chang M M, Smith M M. Is Youngolepis a porolepiform? J Vertebr Paleontol, 1992, 12: 294–312CrossRefGoogle Scholar
  53. 53.
    Long J A. On the relationships of Psarolepis and the onychodontiform fishes. J Vertebr Paleontol, 2001, 21: 815–820CrossRefGoogle Scholar
  54. 54.
    Chang M M. “Rhipidistians”, dipnoans and tetrapods. In: Schultze H P, Trueb L, eds. Origins of the Higher Groups of Tetrapods: Controversy and Consensus. New York: Cornell University Press, 1991. 3–28Google Scholar
  55. 55.
    Jarvik E. Remarks on the structure of the snout in Megalichthys and certain other rhipidistid crossopterygians. Arkiv för Zool, 1966, 19: 41–98Google Scholar
  56. 56.
    Schultze H P. Patterns of diversity in the skull of jawed fishes. In: Janke J, Hall B K, eds. The Skull, Vol. 2. Chicago: University of Chicago Press, 1993. 189–254Google Scholar
  57. 57.
    Parrington F R. The identification of the dermal bones of the head. J Linn Soc (Zool), 1967, 47: 231–239CrossRefGoogle Scholar
  58. 58.
    Jollie M. Segment theory and the homologizing of cranial bones. Am Nat, 1981, 118: 785–802CrossRefGoogle Scholar
  59. 59.
    Jollie M. Chordate Morphology. New York: Reinhold Books, 1962Google Scholar
  60. 60.
    Borgen U J. Homologizations of skull roofing bones between tetrapods and osteolepiform fishes. Palaeontology, 1983, 26: 735–753Google Scholar
  61. 61.
    Jarvik E. The homologies of frontal and parietal bones in fishes and tetrapods. Colloq Intern Centre Natl Rech Sci, 1967, 163: 181–213Google Scholar
  62. 62.
    Schultze H P. Nomenclature and homologization of cranial bone in actinopterygians. In: Arratia G, Schultze H P, Wilson M V H, eds. Mesozoic Fishes 4-Homology and Phylogeny. München: Verlag Dr. Friedrich Pfeil, 2008Google Scholar
  63. 63.
    Jarvik E. Basic Structure and Evolution of Vertebrates, Vol. 1. London: Academic Press, 1980Google Scholar
  64. 64.
    Forey P L. History of the Coelacanth Fishes. London: Chapman & Hall, 1998Google Scholar
  65. 65.
    Janvier P. Early Vertebrates. Oxford Monographs on Geology and Geophysics 33. Oxford: Clarendon Press, 1996Google Scholar
  66. 66.
    Cloutier R, Arratia G. Early diversification of actinopterygians. In: Arratia G, Wilson M V H, Cloutier R, eds. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil, 2004. 217–270Google Scholar
  67. 67.
    Friedman M. Styloichthys as the oldest coelacanth: Implications for early osteichthyan interrelationships. J Syst Palaeontol, 2007, 5: 289–343CrossRefGoogle Scholar
  68. 68.
    Romer A S. The Vertebrate Body. 4th ed. Philadelphia: W. B. Saunders, 1970Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations