Skip to main content
Log in

Genesis of 230Th excess in basalts from mid-ocean ridges and ocean islands: Constraints from the global U-series isotope database and major and rare earth element geochemistry

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on 230Th-238U disequilibrium and major element data from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), this study calculates mantle melting parameters, and thereby investigates the origin of 230Th excess. (230Th/238U) in global MORBs shows a positive correlation with Fe8, P o, Na8, and Fmelt (Fe8 and Na8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%, P o=pressure of initial melting and F melt=degree of melt), while 230Th excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting. Furthermore, compared with the MORBs, higher (230Th/238U) in OIBs actually corresponds to a lower melting degree. This suggests that the 230Th excess in MORBs is controlled by mantle melting conditions, while the 230Th excess in OIBs is more likely related to the deep garnet control. The vast majority of calculated initial melting pressures of MORBs with excess 230Th are between 1.0 and 2.5 GPa, which is consistent with the conclusion from experiments in recent years that D U>D Th for Al-clinopyroxene at pressures of >1.0 GPa. The initial melting pressure of OIBs is 2.2–3.5 GPa (around the spinel-garnet transition zone), with their low excess 226Ra compared to MORBs also suggesting a deeper mantle source. Accordingly, excess 230Th in MORBs and OIBs may be formed respectively in the spinel and garnet stability field. In addition, there is no obvious correlation of K2O/TiO2 with (230Th/238U) and initial melting pressure (P o) of MORBs, so it is proposed that the melting depth producing excess 230Th does not tap the spinel-garnet transition zone. OIBs and MORBs in both (230Th/238U) vs. K2O/TiO2 and (230Th/238U) vs. P o plots fall in two distinct areas, indicating that the mineral phases which dominate their excess 230Th are different. Ce/Yb-Ce curves of fast and slow ridge MORBs are similar, while, in comparison, the Ce/Yb-Ce curve for OIBs shows more influence from garnet. The mechanisms generating excess 230Th in MORBs and OIBs are significantly different, with formation of excess 230Th in the garnet zone only being suitable for OIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tepley F J, Lundstromb C C, Sims K W W, et al. U-series disequilibria in MORB from the Garrett Transform and implications for mantle melting. Earth Planet Sci Lett, 2004, 223: 79–97

    Article  Google Scholar 

  2. McKenzie D. Constraints on melt generation and transport from U-series activity ratios. Chem Geol, 2000, 162: 81–94

    Article  Google Scholar 

  3. Sims K W W, Goldstein S J, Blichert-Toft J, et al. Chemical and iso topic constrains on the generation and transport of magma beneath the East Pacific Rise. Geochimi Cosmochi Acta, 2002, 66: 3481–3504

    Article  Google Scholar 

  4. Sims K W W, Depaolo D J, Murrell D M, et al. Mechanisms of magma generation beneath Hawaii and Mid-Ocean Ridges: Uranium/ thorium and samarium/neodymium isotopic evidence. Science, 1995, 267: 508–511

    Article  Google Scholar 

  5. Richardson C, McKenzie D. Radioactive disequilibria from models of melt generation by plumes and ridges. Earth Planet Sci Lett, 1994, 128: 425–437

    Article  Google Scholar 

  6. Spiegelman M, Reynolds J R. Combined dynamic and geochemical evidence for convergent melt flow beneath the East Pacific Rise. Nature, 1999, 402: 282–285

    Article  Google Scholar 

  7. Williams R W, Gill J B. Effects of partial melting on the uranium decay series. Geochi Cosmochi Acta, 1989, 53: 1607–1619

    Article  Google Scholar 

  8. Turner S, Blundy J, Wood B, et al. Large 230Th-excesses in basalts produced by partial melting of spinel lherzolite. Chem Geol, 2000, 162: 127–136

    Article  Google Scholar 

  9. Wood B J, Blundy J D, Robinson J A C. The role of clinopyroxene in generating U-series disequilibrium during mantle melting: Implications for uranium series disequilibria in basalts. Geochi Cosmochi Acta, 1999, 63: 1613–1620

    Article  Google Scholar 

  10. Beattiea P. The generation of uranium series disequilibria by partial melting of spinel peridotite: Constraints from partitioning studies. Earth Planet Sci Lett, 1993, 117: 379–391

    Article  Google Scholar 

  11. Koh K M, Tay E G, Lundstrom C C, et al. Investigating solid mantle upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: A global approach. Earth Planet Sci Lett, 1998, 157: 151–165

    Article  Google Scholar 

  12. Blundy J D, Wood B J. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 1994, 372: 452–454

    Article  Google Scholar 

  13. Spiegelman M, Elliott T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet Sci Lett, 1993, 118: 1–20

    Article  Google Scholar 

  14. Van Orman J A, Grove T L, Shimizu N. Uranium and thorium diffusion in diopside. Earth Planet Sci Lett, 1998, 160: 505–519

    Article  Google Scholar 

  15. Bourdon B, Zindler A, Elliott T, et al. Constraints on mantle melting at mid-ocean ridges from global 238U-230Th disequilibrium data. Nature, 1996, 384: 231–235

    Article  Google Scholar 

  16. Elkins L J, Gaetani G A, Sims K W W. Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett, 2008, 265: 270–286

    Article  Google Scholar 

  17. Pertermann M, Hirschmann M M, Hametner K, et al. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochem Geophy Geosys, 2004, doi: 10.1029/2003GC000638

  18. Hawkesworth C, Scherstén A. Mantle plumes and geochemistry. Chem Geol, 2007, 241: 319–331

    Article  Google Scholar 

  19. Prytulak J, Elliott T. Determining melt productivity of mantle sources from 238U-230Th and 235U-231Pa disequilibria: An example from Pico Island, Azores. Geochi Cosmochi Acta, 2009, 73: 2103–2122

    Article  Google Scholar 

  20. Russo C J, Rubin K H, Graham D W. Mantle melting and magma supply to the Southeast Indian Ridge: The roles of lithology and melting conditions from U-series disequilibria. Earth Planet Sci Lett, 2009, 278: 55–66

    Article  Google Scholar 

  21. Salters V J M, Hart S R. The hafnium paradox and the role of garnet in the source of mid-ocean ridge basalts. Nature, 1989, 342: 420–422

    Article  Google Scholar 

  22. Salters V J M. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet Sci Lett, 1996, 141: 109–123

    Article  Google Scholar 

  23. Blundy J D, Robinson J A C, Wood B J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett, 1998, 160: 493–504

    Article  Google Scholar 

  24. Landwehr D, Blundy J, Chamorro-Perez E M, et al. U-series disequilibria generated by partial melting of spinel lherzolite. Earth Planet Sci Lett, 2001, 188: 329–348

    Article  Google Scholar 

  25. Iyer S D, Ray D. Structure, tectonic and petrology of mid-oceanic ridges and the Indian scenario. Current Sci, 2003, 85: 277–289

    Google Scholar 

  26. Herzberg C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J Petrol, 2004, 45: 2389–2405

    Article  Google Scholar 

  27. Shaw C S J, Dingwell D B. Experimental peridotite-melt reaction at one atmosphere: a textural and chemical study. Contrib Mineral Petrol, 2008, 155: 199–214

    Article  Google Scholar 

  28. Le Roux P J, Le Roex A P, Schilling J G. Crystallization processes beneath the southern Mid-Atlantic Ridge (40°–55°S), evidence for high-pressure initiation of crystallization. Contrib Mineral Petrol, 2002, 142: 582–602

    Article  Google Scholar 

  29. Zhang G L, Zeng Z G, Yin X B, et al. Deep fractionation of clinopyroxene in the East Pacific Rise 13°N: Evidence from high MgO MORB and melt inclusions. Acta Geol Sin, 2009, 83: 266–277

    Google Scholar 

  30. Kokfelt T F, Hoernle K, Lundstrom C, et al. Time-scales for magmatic differentiation at the Snaefellsjökull central volcano, western Iceland: Constraints from U-Th-Pa-Ra disequilibria in post-glacial lavas. Geochi Cosmochi Acta, 2009, 73: 1120–1144

    Article  Google Scholar 

  31. Claude-Ivanaj C, Joron J L, Allegre C J. 238U-230Th-226Ra fractionation in historical lavas from the Azores: Long-lived source heterogeneity vs. metasomatism fingerprints. Chem Geol, 2001, 176: 295–310

    Article  Google Scholar 

  32. Turner S, Hawkesworth C, Rogers N, et al. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chem Geol, 1997, 139: 145–164

    Article  Google Scholar 

  33. Lundstrom C C, Hoernle K, Gill J. U-series disequilibria in volcanic rocks from the Canary islands: Plume versus lithospheric melting. Geochi Cosmochi Acta, 2003, 67: 4153–4177

    Article  Google Scholar 

  34. Rogers N W, Thomas L E, Macdonald R, et al. 238U-230Th disequilibrium in recent basalts and dynamic melting beneath the Kenya rift. Chem Geol, 2006, 234: 148–168

    Article  Google Scholar 

  35. Rubin K H, Macdougall J D. 226Ra excesses in mid-ocean-ridge basalts and mantle melting. Nature, 1988, 335: 158–161

    Article  Google Scholar 

  36. Rubin K H, Van Der Zander I, Smith M C, et al. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria. Nature, 2005, 437: 534–538

    Article  Google Scholar 

  37. Tepley III F J, Lundstrom C C, Sims K W W, et al. U-series disequilibria in MORB from the Garrett transform and implications for mantle melting. Earth Planet Sci Lett, 2004, 223: 79–97

    Article  Google Scholar 

  38. Cooper K M, Goldstein S J, Sims K W W, et al. Uranium-series chronology of Gorda ridge volcanism: New evidence from the 1996 eruption. Earth Planet Sci Lett, 2003, 206: 459–475

    Article  Google Scholar 

  39. Bourdon B, Turner S P, Ribe N M. Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth Planet Sci Lett, 2005, 239: 42–56

    Article  Google Scholar 

  40. Peate D W, Hawkesworth C J, Van Calsteren P W, et al. 238U-230Th constraints on mantle upwelling and plume-ridge interaction along the Reykjanes ridge. Earth Planet Sci Lett, 2001, 187: 259–272

    Article  Google Scholar 

  41. Pietruszka A J, Rubin K H, Garcia M O. 226Ra-230Th-238U disequilibria of historical Kilauea lavas (1790–1982) and the dynamics of mantle melting within the Hawaiian plume. Earth Planet Sci Lett, 2001, 186: 15–31

    Article  Google Scholar 

  42. Bourdon B, Joron J L, Claude-Ivanaj C, et al. U-Th-Pa-Ra systematics for the Grande Comore volcanics: Melting processes in an upwelling plume. Earth Planet Sci Lett, 1998, 164: 119–133

    Article  Google Scholar 

  43. Niu Y L, Batiza R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. J Geophys Res, 1991, 96: 21753–21777

    Article  Google Scholar 

  44. Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from periodotite using aggregates of diamond. Earth Planet Sci Lett, 1993, 114: 477–489

    Article  Google Scholar 

  45. Klein E M, Langmuir C H. Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res, 1987, 92: 8089–8115

    Article  Google Scholar 

  46. Hekiniana R, Francheteaub J, Armijoc R, et al. Petrology of the Easter microplate region in the South Pacific. J Volcanol Geother Res, 1996, 72: 259–289

    Article  Google Scholar 

  47. Niu Y L, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centres: The East Pacific Rise, 18°–19°S. J Geophys Res, 1996, 101: 27711–27733

    Article  Google Scholar 

  48. Taylor B, Martinez F. Back-arc basin basalt systematics. Earth Planet Sci Lett, 2003, 210: 481–497

    Article  Google Scholar 

  49. Shen Y, Forsyth D W. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. J Geophys Res, 1995, 100: 2211–2237

    Article  Google Scholar 

  50. Longhi J. Some phase equilibrium systematics of lherzolite melting: I. Geochem Geophys Geosys, 2002, 3, doi: 10.1029/2001GC000204

  51. Tenner T J, Hirschmann M M, Withers A C, et al. Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol, 2009, 262: 42–56

    Article  Google Scholar 

  52. O’Hara M J, Richardson S W, Wilson G. Garnet-peridotite stability and occurrence in crust and mantle. Contrib Mineral Petrol, 1971, 32: 48–68

    Article  Google Scholar 

  53. Jenkins D M, Newton R C. Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1000°C in the system CaO-MgO-Al2O3-SiO2, and at 900°C with natural garnet and olivine. Contrib Mineral Petrol, 1979, 68: 407–419

    Article  Google Scholar 

  54. Makenzie D, O’Nions R K. Partial melt distributions from inversion of rare earth element concentrations. J Petrol, 1991, 32: 1021–1091

    Google Scholar 

  55. Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol, 1996, 124: 185–208

    Article  Google Scholar 

  56. Klemme S, O’Neill H S. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol, 2000, 138: 237–248

    Article  Google Scholar 

  57. Robinson J A C, Wood B J. The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett, 1998, 164: 277–284

    Article  Google Scholar 

  58. Toomey D R, Wilcock W S, Solomon S C, et al. Mantle seismic structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science, 1998, 280: 1224–1227

    Article  Google Scholar 

  59. Saltzer R L, Humphreys E D. Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. J Geophys Res, 1997, 102: 11829–11841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoLiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Zeng, Z. Genesis of 230Th excess in basalts from mid-ocean ridges and ocean islands: Constraints from the global U-series isotope database and major and rare earth element geochemistry. Sci. China Earth Sci. 53, 1486–1494 (2010). https://doi.org/10.1007/s11430-010-4038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4038-4

Keywords

Navigation