Science China Earth Sciences

, Volume 53, Issue 10, pp 1533–1541

Validation of atmospheric chemistry measurements from MIPAS, SCIAMACHY, GOMOS onboard ENVISAT by observations of balloon-borne MIPAS-B

  • GuoChang Zhang
  • G. Wetzel
  • H. Oelhaf
  • F. Friedl-Vallon
  • A. Kleinert
  • A. Lengel
  • G. Maucher
  • H. Nordmeyer
  • K. Grunow
  • H. Fischer
Research Paper
  • 51 Downloads

Abstract

In order to validate the atmospheric chemistry measurements by MIPAS, SCIAMACHY, and GOMOS onboard the ENVISAT, three flights of the balloon-borne Michelson Interferometer for Passive Sounding (MIPAS-B) were carried out in 2002 and 2003 at Aire sur l’Adour (France 44°N, 0°E) and Esrange, Kiruna (Sweden 68°N, 21°E). The validation campaign activities are summarized in this paper. The MIPAS-B instrument and its data processing procedure as well as the validation approaches are discussed in detail. The satellite and balloon measurements are matched with high coincidence in time and space, allowing a coincident approach to be applied for their comparisons. Further, a trajectory model is used to confirm and enhance the statistical significance of the validation. The validation results show that MIPAS measurements of accuracy for temperature, H2O, O3, HNO3, CH4, N2O, and NO2 are good in the altitude range of 8–39 km (No2, 22–39 km). And the precision is good between the altitudes of 15–33 km (No2, 22–23 km). However, some exceptions were also found for temperature, H2O, HNO3, and NO2. The SCIAMACHY data of accuracy for O3 and NO2 are within expectations between the altitudes 9–38 km except for O3 in 28–38 km. The GOMOS data about O3 and NO2 are promising according to the preliminary comparison results.

Keywords

validation ENVISAT MIPAS SCIAMACHY GOMOS MIPAS-B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer H, Birk M, Blom C, et al. MIPAS: An instrument for atmospheric and climate research. Atmos Chem Phys, 2008, 8: 2151–2188CrossRefGoogle Scholar
  2. 2.
    Oelhaf H, von Clarmann T, Fischer H, et al. Stratospheric ClONO2, HNO3 and O3 profiles inside the arctic vortex from MIPAS-B limb emission spectra obtained during EASOE. Geophys Res Lett, 1994, 21: 1263–1266CrossRefGoogle Scholar
  3. 3.
    Oelhaf H, Fischer H, Wetzel G, et al. Intercomparison of ILAS/ADESO with MIPAS-B measurements in late Match 1997. Optical Remote Sensing of the Atmosphere and Clouds (SPIE proceedings), Sep14–17, 1998, Beijing, China. SPIE, 1998, 3501: 92–100CrossRefGoogle Scholar
  4. 4.
    Oelhaf H, Friedl-Valloon F, Kleinert A, et al. MIPAS-B observations for the validation of target parameters of ENVISAT chemistry instruments. Proceedings of the 16th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Sankt Gallen, Swizerland, 2003. 451–456Google Scholar
  5. 5.
    Wetzel G, von Clarmann T, Oelhaf H, et al. Vertical profiles of N2O5, along with CH4, N2O and H2O in the later arctic winter retrieval from MIPAS-B limb emission measurements. J Geophys Res, 1995, 100: 23173–23181CrossRefGoogle Scholar
  6. 6.
    Wetzel G, Oelhaf H, von Clarmann T, et al. Vertical profiles of N2O5, HO2NO2, and NO2 inside the Arctic vortex retrieved from nocturnal MIPAS-B2 infrared limb emission measurements in February 1995. J Geophys Res, 1997, 102: 19177–19186CrossRefGoogle Scholar
  7. 7.
    Wetzel G, Oelhaf H, Ruhnke R, et al. NOy partitioning and budget and its correlation with N2O in the arctic vortex and in summer mid-latitudes in 1997. J Geophys Res, 2002, 107: 4280–4291CrossRefGoogle Scholar
  8. 8.
    Höpfner M, Oelhaf H, Wetzel G, et al. Evidence of scattering of tropospheric radiation by PSCs in mid-IR limb emission spectra: MIPAS-B observations and KOPRA simulations. Geophys Res Lett, 2002, 29: 1278–1281CrossRefGoogle Scholar
  9. 9.
    Stowasser M, Oelhaf H, Wetzel G, et al. Simultaneous measurements of HDO, H2O and CH4 with MIPAS-B: Hydrogen budget and indication of dehydration inside the polar vortex. J Geophys Res, 1999, 104: 19213–19225CrossRefGoogle Scholar
  10. 10.
    Stowasser M, Oelhaf H, Ruhnke R, et al. A characterization of the warm 1999 Arctic winter by observations and modelling: NOy partitioning and dynamics. J Geophys Res, 2002, 107: 4376–4386CrossRefGoogle Scholar
  11. 11.
    Langematz U, Labitzke K, Reimer E. Synoptic analysis and trajectories during the MAP/GLOBUS campaign 1983. Planet Space Sci, 1987, 35: 525–538CrossRefGoogle Scholar
  12. 12.
    Reimer E, Kaupp H. Source identification of odour compounds using trajectories. Proceedings of ECO-INFORMA 97. Bayreuth: Eco-Informa Press, 1997. 572–577Google Scholar
  13. 13.
    Kouker W, Langbein I, Reddmann Th, et al. The Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA). Forschungszentrum Karlsruhe: Wissenschaftliche Berichte, Volume FZKA 7278, 1999Google Scholar
  14. 14.
    Fischer H, Oelhaf H. Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers. Appl Opt, 1996, 35: 2787–2796CrossRefGoogle Scholar
  15. 15.
    Fischer H, Blom C, Oelhaf H, et al. ENVISAT-MIPAS: An Instrument for Atmospheric Chemistry and Climate Research. European Space Agency, 2000, SP-1229Google Scholar
  16. 16.
    Raspollini P, Belotti C, Burgess A, et al. MIPAS level 2 operational analysis. Atmos Chem Phys, 2006, 6: 5605–5630CrossRefGoogle Scholar
  17. 17.
    Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY: Mission objectives and measurement modes. J Atmos Sci, 1999, 56: 127–150CrossRefGoogle Scholar
  18. 18.
    Piters A J M, Bramstedt K, Lambert J C, et al. Overview of SCIAMACHY validation: 2002-2004. Atmos Chem Phys, 2006, 6: 127–148CrossRefGoogle Scholar
  19. 19.
    Brinksma E J, Piters A J M, Boyd I S, et al. SCIAMACHY ozone profile validation. In: Proceedings of the Second Workshop on the Atmospheric Chemistry Validation of ENVISAT ESA-ESRIN, Frascati, Italy, 2004Google Scholar
  20. 20.
    von Savigny C, Bracher A, Bramstedt K, et al. SCIAMACHY limb NO2 profile validation. In: Proceedings of the Second Workshop on the Atmospheric Chemistry Validation of ENVISAT ESA-ESRIN, Frascati, Italy, 2004Google Scholar
  21. 21.
    Rozanov A, Bovensmann H, Bracher A, et al. NO2 and BrO vertical profile retrieval from SCIMACHY limb measurements: Sensitivity studies. Adv Space Res, 2005, 36: 846–854CrossRefGoogle Scholar
  22. 22.
    Bertaux J L, Megie G, Widemann T, et al. Monitoring of ozone trend by stellar occultations: the GOMOS instrument. Adv Space Res, 1991, 11: 237–242CrossRefGoogle Scholar
  23. 23.
    Bertaux J L, Dalaudier F, Hauchecorne A. ENVISAT-GOMOS-An instrument for global atmosphere ozone monitoring. European Space Agency, 2001, SP-1244Google Scholar
  24. 24.
    Saavedra de Miguel L. GOMOS Monthly Report, ENVI-SPPAEOPG-TN-05-0007, 2005, Issue1.0: 48Google Scholar
  25. 25.
    Fischer H. Remote sensing of atmospheric trace constituents using Fourier transform spectrometry. Ber Bunsenges Phys Chem, 1992, 96: 306–314Google Scholar
  26. 26.
    Fischer H. Remote sensing of atmospheric trace gases. Interdisc Sci Rev, 1993, 10: 185–191Google Scholar
  27. 27.
    Blom C E, Fischer H, Glatthor N, et al. Airborne measurements during the European arctic stratospheric ozone experiment column amounts of HNO3 and O3 derived from FTIR emission sounding. Geophys Res Lett, 1994, 21: 1351–1354CrossRefGoogle Scholar
  28. 28.
    Blom C E, Fischer H, Glatthor N, et al. Spatial and temporal variation of CIONO2, HNO3 and O3 in the Arctic winter of 1992/1993 as obtained by airborne infrared emission spectroscopy. J Geophys Res, 1995, 100: 9101–9114CrossRefGoogle Scholar
  29. 29.
    Blom C E, Glude T, Keim C, et al. MIPAS-STR: A new instrument for stratospheric aircraft. Proceedings of European Symposium on Atmospheric Measurements from Space, European Space Agency, Noordwijk, The Netherland, 18–22 January, 1999Google Scholar
  30. 30.
    Friedl-Vallon F, Maucher G, Seefeldner M, et al. Design and characterization of the balloon-borne michelson interferometer for passive atmospheric sounding (MIPAS-B2). Appl Opt, 2004, 43: 3335–3355CrossRefGoogle Scholar
  31. 31.
    Kleinert A. Correction of detector nonlinearity for the balloon-borne Michelson interferometer for passive atmospheric sounding (MIPAS-B2). Appl Opt, 2006, 45: 425–431CrossRefGoogle Scholar
  32. 32.
    Kleinert A, Trieschmann O. Phase determination for a Fourier transform infrared spectrometer in emission mode. Appl Opt, 2007, 46: 2307–2319CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • GuoChang Zhang
    • 1
  • G. Wetzel
    • 2
  • H. Oelhaf
    • 2
  • F. Friedl-Vallon
    • 2
  • A. Kleinert
    • 2
  • A. Lengel
    • 2
  • G. Maucher
    • 2
  • H. Nordmeyer
    • 2
  • K. Grunow
    • 3
  • H. Fischer
    • 2
  1. 1.Department of Physics and Information EngineeringShangqiu Normal CollegeShangqiuChina
  2. 2.Institute for Meteorology and Climate Research (IMK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Senate Department for HealthEnvironment and Consumer ProtectionBerlinGermany

Personalised recommendations