Science in China Series D: Earth Sciences

, Volume 52, Issue 2, pp 213–226 | Cite as

Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

  • XianBin WangEmail author
  • ZhanQian Guo
  • JinCai Tuo
  • HongYan Guo
  • ZhenXi Li
  • ShengGuang Zhuo
  • HongLiang Jiang
  • LongWei Zeng
  • MingJie Zhang
  • LianSheng Wang
  • ChunXue Liu
  • Hong Yan
  • LiWu Li
  • XiaoFeng Zhou
  • YongLi Wang
  • Hui Yang
  • Guang Wang


This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mechanisms and from different sources in nature. It is demonstrated that the biodegradation or thermodegradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ13C1 value ranges from −110% to −50% for microbial gases but from −50% to −35% (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δ D values characterized by normal distribution, i.e. δ13C1< δ 13C2< δ 13C3< δ 13C4 and \( \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } \), and by a positive correlation between the δ 13C and δ D values. Simple carbon-bearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ13C1 heavier than −30‰ Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ13C1> δ 13C2> δ 13C3> δ 13C4 and \( \delta D_{CH_4 } < \delta D_{C_2 H_6 } < \delta D_{C_3 H_8 } < \delta D_{C_4 H_{10} } \). The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from −30.5% to −16.7% with a very narrow δ D range between −203‰−196‰ These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ C values, and a negative correlation between their δ 13C and δ C values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3. The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.


generation mechanism of natural gases kinetic isotope fractionation the Songliao Basin of China commercial abiogenic hydrocarbon gaspool 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Porfir’er V B. Inorganic origin of petroleum. AAPG, 1974, 58: 3–33Google Scholar
  2. 2.
    Porfir’er V B. Inorganic origin of petroleum. AAPG, 1975, 59: 886–889Google Scholar
  3. 3.
    Gold T. Terrestrial sources of carbon and earthquake outgassing. J Petrol Geol, 1979, 1: 1–19CrossRefGoogle Scholar
  4. 4.
    Gold T, Soter S. The deep-earth gas hypothesis. Sci Am, 1980, 242(6): 154–161CrossRefGoogle Scholar
  5. 5.
    Giardini A A, Melton C E. A scientific explanation for the origin and location of petroleum accumulations. J Petrol Geol, 1983, 5:117–138CrossRefGoogle Scholar
  6. 6.
    MacDonald G J. The many origins of natural gas. J Petrol Geol, 1983, 5: 341–362CrossRefGoogle Scholar
  7. 7.
    Xu Y C, Wang X B, Wu R M, et al. Isotopic geochemistry of noble gases in natural gases (in Chinese). Geochimistry, 1979, (4): 271–282Google Scholar
  8. 8.
    Wang X B. Natural gases derived from the deep Earth (in Chinese). Chin Sci Bull, 1982, 27(17): 1069–1071Google Scholar
  9. 9.
    Wang X B, Li C Y, Chen J F, et al. On abiogenic gases (in Chinese). China Sci Bull, 1997, 42(12): 1233–1241Google Scholar
  10. 10.
    Kropotkin P N. Degassing of the earth and the origin of hydrocarbons. Int Geol Rev, 1985, 27: 1261–1275CrossRefGoogle Scholar
  11. 11.
    Jenden P D, Drazan D J, Kaplan I R. Mixing of thermogenic natural gases in Northern Appalachian Basin. AAPG, 1993, 77: 980–998Google Scholar
  12. 12.
    Jenden P D, Hiltton D R, Kaplan I R, et al. Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell D, ed. The Future of Energy Gases, Professional Paper 1570, U.S. Geological Survey, 1993. 1–56Google Scholar
  13. 13.
    Wang X B, Li C Y, Chen J F, et al. Mantle-derived methane homologue, carbon dioxide and helium in natural gas from Songliao Basin, China. Magazine, 1998, 62A: 1665–1666Google Scholar
  14. 14.
    Horita J, Berndt M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science,1999, 85: 1055–1057CrossRefGoogle Scholar
  15. 15.
    Sherwood L B, Frape S K, Weise S M, et al. Abiogenic methano-genesis in crystalline rocks. Geochem Cosmochem Acta, 1993, 57: 5087–5097CrossRefGoogle Scholar
  16. 16.
    Sherwood Lollar B, Westgate T D, Ward J A, et al. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature, 2002, 16: 522–435CrossRefGoogle Scholar
  17. 17.
    Guo Z Q, Wang X B. A discussion on the abiogenesis in Songliao Basin (in Chinese). Sci China Ser D-Earth Sci, 1994, 24(3): 304–309Google Scholar
  18. 18.
    Guo Z Q, Wang X B, Liu W L. Characteristics of abiogenic gas accumulations in Songliao Basin. Sci China Ser D-Earth Sci, 1997, 27(2): 143–148Google Scholar
  19. 19.
    Dai J X, Xia X Y, Qin S F, et al. Origins of reversed alkane δ 13C values for biogenic gases in China (in Chinese). Petrol Expl Dev, 2003, 24(1): 3–6Google Scholar
  20. 20.
    Dai J X, Xia X Y, Qin S F, et al. Origins of partially reversed alkane δ 13C values for biogenic gases in China. Org Geochem, 2004, 35: 405–411CrossRefGoogle Scholar
  21. 21.
    Dai J X, Yang S F, Chen H L, et al. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary. Org Geochem, 2005, 36: 1664–1688CrossRefGoogle Scholar
  22. 22.
    Huang H P. A study on the isotope reversion for deep natural gases from the Xujiaweizi faulted depression in Songliao Basin (in Chinese). Geosciences, 2000, 25(6): 617–623Google Scholar
  23. 23.
    Huang H P, Yang Y F, Chen F J, et al. Formation of the deep natural gas from the Xujiaweizi faulted depression (in Chinese). Earth Sci Front, 2000, 17(4): 515–522Google Scholar
  24. 24.
    Yang Y F, Ren Y G, Li J K, et al. Geochemical characteristics and genesis of the deep natural gas from the Wangsheng area in Songliao Basin (in Chinese). Petrol Expl Dev, 1999, 26(4): 18–21Google Scholar
  25. 25.
    Huang H P, Yang J, Yang Y F, et al. Geochemistry of natural gases in deep strata of the Songliao Basin, NE China. Int J Coal Geol, 2004, 58: 231–244CrossRefGoogle Scholar
  26. 26.
    Yang Y F, Zhang Q, Huang H P, et al. An abiogenic natural gas from the Xujiaweizi faulted depression in Songliao Basin and its accumulation mode (in Chinese). Earth Sci Front, 2000, 7(4): 523–533Google Scholar
  27. 27.
    Hou Q J, Yang Y F. A discussion on the abiogenic natural gas in Songliao Basin and its prospecting orientation (in Chinese). Nat Gas Ind, 2002, 22(3): 5–10Google Scholar
  28. 28.
    Li C Y, Wang X B, Xia X Y. A digital modeling of a reverse d13C value trend for methane and its homologues and a discussion on abiogenic natural gas accumulations (in Chinese). Acta Sediment Sin, 1999, 1(2): 303–311Google Scholar
  29. 29.
    Chen X D, Wang X B. Effects of pressure on the maturation of organic matter and the formation of hydrocarbons (in Chinese). Geosci Prog, 1999, 14: 31–35Google Scholar
  30. 30.
    Wang X B, Guo Z Q, Tuo J C, et al. Formation mechanism of the abiogenic natural gas and its resource prospects (in Chinese). Basic Sci China, 2006, 4: 12–20Google Scholar
  31. 31.
    Abrajano T A, Sturchio N C, Kennedy B M, et al. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl Geochem, 1990, 5: 625–630CrossRefGoogle Scholar
  32. 32.
    McCarty H B, Felbeck G T Jr. High temperature simulation of petroleum formation-IV. Stable carbon isotope studies of gaseous hydrocarbons. Org Geochem, 1986, 9: 183–192CrossRefGoogle Scholar
  33. 33.
    James A T. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG, 1983, 67: 1176–1191Google Scholar
  34. 34.
    Schoell M. Genetic characterization of natural gases. AAPG, 1983, 67: 2225–2238Google Scholar
  35. 35.
    Pernaton E, Prinzhofer A, Schneider F. Reconsideration of methane isotope signature as a criterion for the genesis of natural gas. Revue Inst Francais Petrole, 1996, 51: 635–651Google Scholar
  36. 36.
    Chung H M, Gormly J R, Squires R M. Origin of gases hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem Geol, 1988, 71: 97–103CrossRefGoogle Scholar
  37. 37.
    Des Marais D J, Donchin J H, Nehring N L, et al. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature, 1981, 292: 826–828CrossRefGoogle Scholar
  38. 38.
    Yuen G U, Pecore J A, Kerridge J F, et al. Carbon isotope fractionation in Fischer-Tropsch type reactions. Lunar Planet Sci Conf XXI, 1990, 1367–1368Google Scholar
  39. 39.
    Hu G X, Ouyang Z Y, Wang X B, et al. Carbon isotopic fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula. Sci China Ser D-Earth Sci, 1998, 41(2): 202–207CrossRefGoogle Scholar
  40. 40.
    Lancet H S, Anders E. Carbon isotope fractionation in the Fischer-Tropsch synthesis of methane. Science, 1970, 170: 980–982CrossRefGoogle Scholar
  41. 41.
    Yuen G, Blair N, Des Marais D J, et al. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature, 1984, 307: 252–254CrossRefGoogle Scholar
  42. 42.
    Lü G X, Chou L J, Zhang B, et al. Catalysis mechanism of deep and abiogenic hydrocarbons (in Chinese). Nat Gas Geosci, 2006, 17(1): 14–17Google Scholar
  43. 43.
    Fuex A N. The use of stable carbon isotopes in hydrocarbon exploration. J Geochem Expl, 1977, 7: 155–188CrossRefGoogle Scholar
  44. 44.
    Prinzhofer A A, Huc A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem Geol, 1995, 126: 281–290CrossRefGoogle Scholar
  45. 45.
    Laughrey C D, Balassare F J. Geochemistry and origin of some natural gases in the Plateau Province, Central Appalachian Basin, Pennsylvania and Ohio. AAPG, 1998, 82: 317–335Google Scholar
  46. 46.
    Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta, 1980, 44: 649–661CrossRefGoogle Scholar
  47. 47.
    Schoell M, ed. Origins of methane in the Earth. Chem Geol, 1988, 71: 265Google Scholar
  48. 48.
    Whiticar M J. Correlation of natural gases with their sources. In: Magoon L, Dow W, eds. The Petroleum System-From Source to Trap. AAPG Memoir, 1994, 60: 261–284Google Scholar
  49. 49.
    Whiticar M J. Carbon and hydrogen systematics of bacterial formation and oxidation of methane. Chem Geol, 1999, 161: 291–314CrossRefGoogle Scholar
  50. 50.
    Charlou J L, Fouquet Y, Donval J P, et al. Mineral and gas chemistry of hydrothermal fluids on ultrafast spreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise,1993) phase separation processes controlled by volcanic and tectonic activity. J Geophy Res, 1996, 101(B7): 15899–15919CrossRefGoogle Scholar
  51. 51.
    Welhan J A, Craig H. Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geol Res Lett, 1979, 6: 729–831Google Scholar
  52. 52.
    Abrajano T A, Sturchio N C, Bohlke J K, et al. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or Shallow origin? Chem Geol, 1988, 71: 211–222CrossRefGoogle Scholar
  53. 53.
    Welhan J A. Origins of methane in hydrothermal systems. Chem Geol, 1988, 7: 183–189CrossRefGoogle Scholar
  54. 54.
    Jeffrey A, Kaplan I R. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden. Chem Geol, 1988, 71: 237–255CrossRefGoogle Scholar
  55. 55.
    Wang X B, Chen J F, Li Y F, et al. Volcanic activity revealed by isotope systematics of gases from hydrothermal springs in Tenchong, China. In: Proceeding Volume of the Yamada Conference. Tokyo: Scientific Publishing Company, 1994. 293–302Google Scholar
  56. 56.
    Wang X B. Studying and looking for new hydrocarbon resources and exploring new exploration fields (in Chinese). Geochem Bull Min Rock, 2002, 21(1): 22–25Google Scholar
  57. 57.
    Wang X B, Tuo J C, Li Z X, et al. Exploring theories of natural gas genesis and widening exploration fields for new resources (in Chinese). Nat Gas Geosci, 2003, 14(1): 30–34Google Scholar
  58. 58.
    Wang X B, Tuo J C, Zhou S X, et al. On the formation mechanism of natural gases and dependent scientific problems (in Chinese). Nat Gas Geosci, 2005, 17(1):7–12Google Scholar
  59. 59.
    Wang X B, Tuo J C, Zhou S X, et al. Organic matter evolution and hydrocarbon resources in the deep Earth (in Chinese). Petrol Expl Dev, 2005, 32(4): 159–164Google Scholar
  60. 60.
    Du J, Jin Z, Xie H, et al. Stable carbon isotope compositions of gaseous hydrocarbons produced from high pressure and high temperature pyrolysis of lignite. Org Geochem, 2003, 34: 97–104CrossRefGoogle Scholar
  61. 61.
    Hosgormez H, Yalcin M N, Cramer B, et al. Isotopic and molecular composition of coal-bed gas in the Amasra region (Zongulda basin-western Black Sea). Org Geochem, 2002, 33: 1429–1439CrossRefGoogle Scholar
  62. 62.
    Xu Y C, Liu W H, Shen P, et al. Carbon and hydrogen isotopic characteristics of natural gases from the Luliang and Baoshan basins in Yunnan Province, China. Sci China Ser D-Earth Sci, 2006, 49(9): 938–946CrossRefGoogle Scholar
  63. 63.
    Norville G A, Dawe R A. Carbon and hydrogen isotopic variations of natural gases in the southeast Columbus basin offshore southeastern Trinidad,West Indies-clues to origin and maturity. Appl Geochem, 2000, 20: 2086–2094Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • XianBin Wang
    • 1
    Email author
  • ZhanQian Guo
    • 2
  • JinCai Tuo
    • 1
  • HongYan Guo
    • 1
  • ZhenXi Li
    • 1
  • ShengGuang Zhuo
    • 3
  • HongLiang Jiang
    • 2
  • LongWei Zeng
    • 2
  • MingJie Zhang
    • 4
  • LianSheng Wang
    • 2
  • ChunXue Liu
    • 2
  • Hong Yan
    • 1
  • LiWu Li
    • 1
  • XiaoFeng Zhou
    • 1
  • YongLi Wang
    • 1
  • Hui Yang
    • 1
  • Guang Wang
    • 1
  1. 1.Key Laboratory of Gas GeochemistryChinese Academy of SciencesLanzhouChina
  2. 2.Daqing Oilfield Company Ltd.DaqingChina
  3. 3.Institute of Earth Sciences and Information TechnologyNortheast University at QinhuangdaoQinhuangdaoChina
  4. 4.School of Earth and Environment SciencesLanzhou UniversityLanzhouChina

Personalised recommendations