Science in China Series D: Earth Sciences

, Volume 51, Issue 11, pp 1623–1632 | Cite as

Extinction pattern and process of siliceous sponge spicules in deep-water during the latest Permian in South China

  • GuiChun Liu
  • QingLai FengEmail author
  • SongZhu Gu


Diverse and abundant siliceous sponge spicules were found in the latest Permian beds, Dongpan and Ma’anying sections, South China, including 52 types and 85 forms. Further investigation on these spicules allows us to understand extinction patterns and processes of deep-water sponges. These sponge spicules rapidly decreased below the Permian/Triassic boundary (PTB), and the extinction rates reach up to 88%–90% for types and 88%–92% for forms. Their extinction pattern is a gradual one that consists of two stages: the first is characterized by a gentle and slow extinction speed and low extinction rate, and the second by sharp and fast extinction speed and high extinction rate. The morphological extinction process is involved in the disappearance first of the triaxons and tetraxons, then of the polyaxons and demas, and last of monaxons. In exterior structure extinction, the complex spicules with branches and spines became extinct more easily than did smooth spicules. After the end-Permian mass extinction, only five common and smooth forms survived: Oxeas A, Oxeas B, Strongles B, Oxy-orthpentactines and Oxy-orthohexactines A.


siliceous sponge spicules Permian-Triassic extinction pattern process South China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sepkoski J J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 1981, 7: 36–53Google Scholar
  2. 2.
    Erwin D H. The Permo-Triassic extinction. Nature, 1994, 367: 231–236CrossRefGoogle Scholar
  3. 3.
    Raup D M, Sepkoski J J. Mass exrinction in the marine fossil record. Science, 1983, 219(4589): 1501–1503CrossRefGoogle Scholar
  4. 4.
    Jablonski D. Ectinctions: apaleontological perspective. Science, 1991, 253(5021): 754–757CrossRefGoogle Scholar
  5. 5.
    Jablonski D. Extinction in the fossil record. Philos Trans Royal Soc, 1994, 344(1037): 19–17Google Scholar
  6. 6.
    Raup D M. The role of extinction in evolution. Proc Natl Acad Sci USA, 1994, 91: 6758–6763CrossRefGoogle Scholar
  7. 7.
    Peng Y Q, Fu Y H. The global changes and bio-effects across the Paleozoic-Mesocoic transition. Earth Sci Front, 2002, 3: 85–93Google Scholar
  8. 8.
    Benton M J, Twitchett R J. How to kill almost all life: The end-Permian extinction event. Trends Ecol Evol, 2003, 18(7): 358–365CrossRefGoogle Scholar
  9. 9.
    Loriga C B, Cassinis G. The Permo-Triassic boundary in the Southern Alps (Italy) and in adjacent Periadriatic regions. In: Sweet W C, Yang Z Y, Dickins J M, et al., eds. Permo-Trissic Events in the Eastern Tethys. Cambridge: Cambridge University Press, 1992. 78–79Google Scholar
  10. 10.
    Rampino M R, Adler A C. Evidence for abrupt latest Permian mass extinction of Foraminifera: Results of tests for the Signor-Lipps effect. Geology, 1998, 26(5): 415–418CrossRefGoogle Scholar
  11. 11.
    Wignall P B, Rampino M R. Evidence for abrupt latest Permian mass extinction of Foraminifera: Results of tests for the Signor-Lipps effect: Discussion and reply. Geology, 1999, 27: 383–384CrossRefGoogle Scholar
  12. 12.
    Wang S Y, Yin H F. Discovery of microspherules in claystone near the terrestrial Permian-Triassic boundary. Geol Rev, 2001b, 47(4): 411–414Google Scholar
  13. 13.
    Ward P D, Botha J, Buick R, et al. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science, 2005, 307(5710): 709–714CrossRefGoogle Scholar
  14. 14.
    Twitchett R J, Looy C V, Morante R, et al. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 2001, 29(4): 351–354CrossRefGoogle Scholar
  15. 15.
    Groves J, Rettori R, Payne J, et al. End-Permian mass extinction of lagenide foraminifers in the Southern Alps (Northern Italy). J Paleontol, 2007, 81(3): 415–434CrossRefGoogle Scholar
  16. 16.
    Wang Y, Cao C Q, Jin Y G. Analysis of the confidence intervals of marine fossil fossils around the Permian-Trissic boundary in Meishan, Zhejiang (in Chinese). Acta Micropalaeont Sin, 2001, 40(2): 244–251Google Scholar
  17. 17.
    Signor P W, Lipps J H. Samping bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap, 1982, 190: 291–296Google Scholar
  18. 18.
    Raup D M. The case for extraterrrestrial causes of extinction (in Evolution and extinction). Royal Soc London Philos Trans, Ser B, 1989, 325(1228): 421–435CrossRefGoogle Scholar
  19. 19.
    Strauss D, Sadler P M. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Math Geol, 1989, 21(4): 411–427CrossRefGoogle Scholar
  20. 20.
    Meldahl K H. Sampling species abundance and the stratigraphic signature of mass extinction: A test using Holocene tidal flat molluses. Geology, 1990, 18: 890–893CrossRefGoogle Scholar
  21. 21.
    He W H, Shen S Z, Feng Q L, et al. A Late Changhsingian (Late Permian) deepwater brachiopod fauna from the Talung Formation at the Dongpan Section, Southern Guangxi, South China. J Paleontol, 2005, 79(5): 927–938CrossRefGoogle Scholar
  22. 22.
    Zhang F, Feng Q L, He W H, et al. Multidisciplinary stratigraphy across the Permian-Triassic boundary in deep-water environment of the Dongpan section, south China. Norw J Geol, 2006, 86: 125–131Google Scholar
  23. 23.
    Feng Q L, He W H, Gu S Z, et al. Radiolarian evolution during the latest Permian in South China. Glob Planet Change, 2007, 55(1–3): 177–192CrossRefGoogle Scholar
  24. 24.
    Pessagno Jr E A, Newport R L. Atechnique for extraction Radiolaria from rediolarian cherts. Micropaleontology, 1972, 18(2): 231–234CrossRefGoogle Scholar
  25. 25.
    Palmer A A. Paleoenvironmental significance of siliceous sponge spicules from sites 627 and 628, little Bahama bank, Ocean drilling program leg 101. P Ocean Drill Program, Scientific Results 1988, 101: 159–168Google Scholar
  26. 26.
    Rützler K, Macintype I G. Siliceous sponge spicules in coral reef sediments. Mar Biol, 1978, 49: 147–159CrossRefGoogle Scholar
  27. 27.
    Boardman R S, Cheetham A H, Rowell A J. Phylum Porifera. In: Fossil Invertebrates. London: Blackwell Scientific Publications, 1987. 116–139Google Scholar
  28. 28.
    Groves J R, Rettori R, Altiner D, et al. Wall structures in selected Paleozoic lagenide foraminifera mpacts and marine invertebrate extinctions. J Paleontol, 2004, 78(2): 245–256CrossRefGoogle Scholar
  29. 29.
    Peng Y Q, Shi G R, Gao Y Q, et al. How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr Palaeoclim Palaeoecol, 2007, 252: 118–131CrossRefGoogle Scholar
  30. 30.
    He W H, Feng Q L, Weldon E A, et al. A late Permian to early Triassic bivalve fauna from the Dongpan Section, southern Guangxi, South China. J Paleontol, 2007, 81(5): 1009–1019CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Key Laboratory of Biogeology and Environmental Geology of Ministry of EducationChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations