Science in China Series D: Earth Sciences

, Volume 50, Issue 11, pp 1693–1706

Mass budgets of the Lambert, Mellor and Fisher Glaciers and basal fluxes beneath their flowbands on Amery Ice Shelf

  • Wen JiaHong 
  • Kenneth C. Jezek
  • Beata M. Csathó
  • Ute C. Herzfeld
  • Katy L. Farness
  • Philippe Huybrechts
Article

Abstract

We used in situ measurements and remote-sensing data sets to evaluate the mass budgets of the Lambert, Mellor and Fisher Glaciers and the basal melting and freezing rates beneath their flowbands on the Amery Ice Shelf. Our findings show the Lambert and Mellor Glaciers upstream of the ANARE Lambert Glacier Basin (LGB) traverse may have positive imbalances of 3.9±2.1 Gt a−1 and 2.1±2.4 Gt a−1, respectively, while the Fisher Glacier is approximately in balance. The upstream region as a whole has a positive imbalance of 5.9±4.9 Gt a−1. The three same glaciers downstream of the ANARE LGB traverse line are in negative imbalance, where the whole downstream region has a negative imbalance of −8.5±5.8 Gt a−1. Overall the mass budgets of the Lambert, Mellor, and Fisher Glaciers are close to balance, and the collective three-glacier system is also nearly in balance with a mass budget of −2.6±6.5 Gt a−1. The significant positive imbalances for the interior basin upstream of the ice-movement stations established in the early 1970s (GL line) reported previously are possibly due to an overestimate of the total accumulation and an underestimate of the ice flux through the GL line.

The mean melting rate is −23.0±3.5 m ice a−1 near the southern grounding line, which decreases rapidly downstream, and transitions to refreezing at around 300 km from the southern extremity of the Amery Ice Shelf. Freezing rates along the flowbands are around 0.5±0.1 to 1.5±0.2 m ice a−1. The percentage of ice lost from the interior by basal melting beneath the flowbands is about 80%±5%. The total basal melting and refreezing beneath the three flowbands is 50.3±7.5 Gt ice a−1 and 7.0±1.1 Gt ice a−1, respectively. We find a much larger total basal melting and net melting than the results for the whole Amery Ice Shelf derived from previous modeling and oceanographic measurements.

Keywords

mass budget basal melting and freezing Lambert Glacier Basin Amery Ice Shelf East Antarctica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley C R, Giovinetto M R. Mass balance of Antarctica and sea level change. In: Weller G, Wilson C L, Severin B AB, eds. Collection in International Conference on the Role of the Polar Regions in Global Change: Proceedings of a Conference Held June 11–15, 1990 at the University of Alaska Fairbanks. Vol II. Fairbanks: Geophysical Institute/Center for Global Change and Arctic System Research, University of Alaska, 1991. 481–488Google Scholar
  2. 2.
    Jacobs S S, Helmer H H, Doake C S M, et al. Melting of ice shelves and the mass balance of Antarctica. J Glaciol, 1992, 38(130): 375–387Google Scholar
  3. 3.
    Rignot E, Thomas R H. Mass balance of polar ice sheets. Science, 2002, 297: 1502–1506CrossRefGoogle Scholar
  4. 4.
    Davis C H, Li Y, McConnell J R et al. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science, 2005, 308: 1898–1901CrossRefGoogle Scholar
  5. 5.
    Zwally H J, Giovinetto M B, Li J, et al. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol, 2005, 51(175): 509–527Google Scholar
  6. 6.
    Velicogna I, Wahr J. Measurements of time-variable gravity show mass loss in Antarctica. Science, 2006, 311: 1754–1756CrossRefGoogle Scholar
  7. 7.
    Whillans I M, Bindschadler R A. Mass balance of Ice Stream B, West Antarctica. Ann Glaciol, 1998, 11: 187–193.Google Scholar
  8. 8.
    Berthier E, Raup B, Scambos E. New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J Glaciol, 2003, 49(167): 503–511Google Scholar
  9. 9.
    The ISMASS Committee. Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Glob Planet Change, 2004, 42: 1–15CrossRefGoogle Scholar
  10. 10.
    Jacobs S S, Hellmer H H, Jenkins A. Antarctic ice sheet melting in the Southeast Pacific. Geophys Res Lett, 1996, 23(9): 957–960CrossRefGoogle Scholar
  11. 11.
    Rignot E, Jacobs S S. Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science, 2002, 296: 2020–2023CrossRefGoogle Scholar
  12. 12.
    Jenkins A and Doake C S M. Ice-ocean interaction on Ronne Ice Shelf, Antarctica. J Geophys Res, 1991, 96(C1): 791–813Google Scholar
  13. 13.
    Gray L, Short N, Bindschadler R, et al. RADARSAT interferometry for Antarctic grounding-zone mapping. Ann Glaciol, 2002, 34: 269–276Google Scholar
  14. 14.
    Joughin I, Tulaczyk S. Positive mass balance of the Ross ice streams, West Antarctica, Science, 2002, 295: 476–480CrossRefGoogle Scholar
  15. 15.
    Rignot E. East Antarctic glaciers and ice shelves mass balance from satellite data. Ann Glaciol, 2002, 34: 228–234Google Scholar
  16. 16.
    Liu H, Jezek K C, Li B. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach, J Geophys Res, 1999, 104(B10): 23199–23214CrossRefGoogle Scholar
  17. 17.
    Zwally H J, Schutz B, Abdalati W, et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn, 2002, 34(3–4): 405–445CrossRefGoogle Scholar
  18. 18.
    Herzfeld U C, ed. Atlas of Antarctica: Topographic Maps From Geostatistical Analysis of Satellite Radar Altimeter Data. New York· Tokyo: Springer Verlag Heidelberg, 2004. 1–65Google Scholar
  19. 19.
    Joughin I, Padman L. Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophys Res Lett, 2003, 30(9): 1477CrossRefGoogle Scholar
  20. 20.
    Vaughan D G, Bamber J L, Giovinetto M B, et al. Cooper reassessment of net surface mass balance in Antarctica. J Climate, 1999, 12(4): 933–946CrossRefGoogle Scholar
  21. 21.
    Giovinetto M B, Zwally H J. Spatial distribution of net surface accumulation on the Antarctic ice sheet. Ann Glaciol, 2000, 31: 171–178Google Scholar
  22. 22.
    Lythe M B, Vaughan D G. The BEDMAP Consortium. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. J Geophys Res, 2001, 106(B6): 11335–11351CrossRefGoogle Scholar
  23. 23.
    Fricker H A, Hyland G, Coleman R, et al. Digital elevation models for the Lambert Glacier-Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry. J Glaciol, 2000, 46(155): 553–560Google Scholar
  24. 24.
    Fricker H A, Warner R C, Allison I. Mass balance of the Lambert Glacier-Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. J Glaciol, 2000, 46(155): 561–570Google Scholar
  25. 25.
    Jezek K C. Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery. Ann Glaciol, 1999, 29: 286–290Google Scholar
  26. 26.
    Allison I. The mass budget of the Lambert Glacier drainage basin, Antarctica. J Glaciol, 1979, 22(87): 223–235Google Scholar
  27. 27.
    Fricker H A, Allison I, Craven M et al. Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. J Geophys Res, 2002, 107(B5): 2092CrossRefGoogle Scholar
  28. 28.
    Budd W F, Corry M J, Jacka T H. Results from the Amery Ice Shelf project. Ann Glaciol, 1982, 3: 36–41Google Scholar
  29. 29.
    Wu X, Jezek K C. Antarctic ice-sheet balance velocities from merged point and vector data, J Glaciol, 2004, 50(169): 219–230Google Scholar
  30. 30.
    Hambrey M J, Dowdeswell J A. Flow regime of the Lambert Glacier-Amery Ice Shelf system, Antarctica: structural evidence from Landsat imagery. Ann Glaciol, 1994, 20: 401–406Google Scholar
  31. 31.
    Jezek K C. Observing the Antarctic Ice Sheet using the RADARSAT-1 synthetic aperture radar. Polar Geography, 2003, 27(3): 197–209Google Scholar
  32. 32.
    McIntyre N F. A re-assessment of the mass balance of the Lambert Glacier drainage basin, Antarctica. J Glaciol, 1985, 31(107): 34–38Google Scholar
  33. 33.
    Wong A P S, Bindoff N L, Forbes A. Ocean-ice shelf interaction and possible bottom water formation in Prydz Bay, Antarctica. In: Jacobs S S, Weiss R F, eds. Collection in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Antarct Res Ser, Vol. 75. Washington, D. C.: AGU, 1998. 173–187Google Scholar
  34. 34.
    Morgan V I. Oxygen isotope evidence for bottom freezing on the Amery Ice Shelf. Nature, 1972, 238: 393–394CrossRefGoogle Scholar
  35. 35.
    Hellmer H H, Jacobs S S. Ocean interactions with the base of Amery Ice Shelf, Antarctica. J Geophys Res, 1992, 97, 20: 305–320, 317Google Scholar
  36. 36.
    Hellmer H H. Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties. Geophys Res Lett, 2004, 31: L10307CrossRefGoogle Scholar
  37. 37.
    Williams M J M, Grosfeld K, Warner R C, et al. Ocean circulation and ice-ocean interaction beneath the Amery Ice Shelf, Antarctica. J Geophys Res, 2001, 106(C10), 22: 383–22400CrossRefGoogle Scholar
  38. 38.
    Fricker H A, Popov S, Allison I, et al. Distribution of marine ice beneath the Amery Ice Shelf. Geophys Res Lett, 2001, 28(11): 2241–2244CrossRefGoogle Scholar
  39. 39.
    Jezek K C. RADARSAT-1 Antarctic mapping project: change-detection and surface velocity campaign. Ann Glaciol, 2002, 34: 263–268Google Scholar
  40. 40.
    Zwally H J, Schutz R, Bentley C, et al. Updated current year. GLAS/ICESat L2 Antarctic and Greenland Ice sheet altimetry data V018, 15 October to 18 November 2003. Boulder, CO, National Snow and Ice Data Center. Digital media. 2003Google Scholar
  41. 41.
    Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat Sci Rev, 2002, 21(1–3): 203–231CrossRefGoogle Scholar
  42. 42.
    Joughin I R, Kwok R, Fahnestock M A. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans Geosci Remote Sensing, 1998, GE-36(1): 25–37CrossRefGoogle Scholar
  43. 43.
    Rapp R H, Wang Y M, Pavlis N K. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models, Rep. 410, Dept. of Geodet. Sci. and Surv., Ohio State Univ., Columbus, 1991Google Scholar
  44. 44.
    Hemer M, Harris P. Sediments collected from beneath the Amery Ice Shelf, East Antarctica, document sub-ice-shelf circulation of water and sediments throughout the Holocene. FRISP Report No. 15, 2004Google Scholar
  45. 45.
    Kiernan R. Ice sheet surface velocities along the Lambert Glacier Basin traverse route. Antarctic CRC Research Report No.23, 1–76. Cooperative Research Centre for Antarctica and the Southern Ocean, University of Tasmania. Hobart. 2001Google Scholar
  46. 46.
    Manson R, Coleman R, Morgan P, et al. Ice velocities of the Lambert Glacier from static GPS observations, Earth Planets Space, 2000, 52: 1031–1036Google Scholar
  47. 47.
    Craven M, Higham M, Brocklesby A. Ice thickness and surface & bedrock elevations from the Lambert Glacier Basin traverses 1990–1995. Antarctic CRC Research Report No.23, 1–76. Cooperative Research Centre for Antarctica and the Southern Ocean, University of Tasmania. Hobart. 2001Google Scholar
  48. 48.
    Thomas R H, Csathó B M, Gogineni S, et al. Thickening of the western part of the Greenland ice sheet. J Glaciol, 1998, 46(155): 653–658Google Scholar
  49. 49.
    Thomas R, Akins T, Csathó B M, et al. Mass balance of the Greenland ice sheet at high elevations. Science, 2000, 289(5478): 426–428CrossRefGoogle Scholar
  50. 50.
    Wen J, Jezek K C, Monaghan A J, et al. Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system at high elevations, Ann Glaciol, 2006, 43: 351–360Google Scholar
  51. 51.
    Davis C H, Belu R G, Feng G. Elevation change measurement of the East Antarctic Ice Sheet, 1978–1988, from satellite radar altimetry. IEEE Trans Geosci Remote Sensing, 2001, 39(3): 635–644CrossRefGoogle Scholar
  52. 52.
    Wingham D J, Ridout A J, Scharroo R, et al. Antarctic elevation change from 1992–1996. Science, 1998, 282: 456–458CrossRefGoogle Scholar
  53. 53.
    McConnell J R, Arthern R J, Mosley-Thompson E, et al. Changes in Greenland ice sheet elevation attributed primarily to snow accumulation variability. Nature, 2000, 406: 877–879CrossRefGoogle Scholar
  54. 54.
    Thomas R, Csathó B M, Davis C, et al. Mass balance of higher-elevation parts of the Greenland ice sheet. J Geophys Res, 2001, 106(D24): 33707–33716CrossRefGoogle Scholar
  55. 55.
    Higham M, Craven M, Ruddell A, et al. Snow-accumulation distribution in the interior of the Lambert Glacier basin, Antarctica. Ann Glaciol, 1997, 25: 412–417Google Scholar
  56. 56.
    Fricker H A, Young N W, Allison I, et al. Iceberg calving from the Amery Ice Shelf, East Antarctica. Ann Glaciol, 2002, 34: 241–246Google Scholar
  57. 57.
    Jezek K C. Recent changes in the dynamic condition of the Ross Ice Shelf, Antarctica. J Geophys Res, 1984, 89(B1): 409–416Google Scholar
  58. 58.
    Phillips H A. Applications of ERS satellite radar altimetry in the Lambert Glacier-Amery Ice Shelf system, East Antarctica. Dissertation for the Doctoral Degree, Hobart, Univ. of Tasmania, Australia. 1999, 1–308Google Scholar
  59. 59.
    Allison I. The AMISOR project: ice shelf dynamics and ice-ocean interaction of the Amery Ice Shelf, FRISP Report No. 14, 2003Google Scholar
  60. 60.
    Penrose J, Conde M, Pauly T. Acoustic detection of ice crystals in Antarctic waters. J Geophys Res, 1994, 99(C6): 12573–12580CrossRefGoogle Scholar
  61. 61.
    Leffanue H, Craven M. Circulaition and water masses from current meter and T/S measurements at the Amery Ice Shelf. FRISP Report No. 15, 2004Google Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Wen JiaHong 
    • 1
    • 2
  • Kenneth C. Jezek
    • 2
  • Beata M. Csathó
    • 2
  • Ute C. Herzfeld
    • 3
  • Katy L. Farness
    • 2
  • Philippe Huybrechts
    • 4
    • 5
  1. 1.Department of GeographyShanghai Normal UniversityShanghaiChina
  2. 2.Byrd Polar Research CenterThe Ohio State UniversityColumbusUSA
  3. 3.CIRES/NSIDCUniversity of Colorado BoulderBoulderUSA
  4. 4.Departement GeografieVrije Universiteit BrusselBrusselsBelgium
  5. 5.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany

Personalised recommendations