Science in China Series D: Earth Sciences

, Volume 50, Issue 10, pp 1441–1451 | Cite as

Three-dimensional thermal structure of the Chinese continental crust and upper mantle

  • An MeiJian 
  • Shi YaoLin 


We invert S-wave velocities for the 3D upper-mantle temperatures, in which the position with a temperature crossing the 1300°C adiabat is corresponding to the top of the seismic low velocity zone. The temperatures down to the depth of 80 km are then calculated by solving steady-state thermal conduction equation with the constraints of the inverted upper-mantle temperatures and the surface temperatures, and then surface heat flows are calculated from the crustal temperatures. The misfit between the calculated and observed surface heat flow is smaller than 20% for most regions. The result shows that, at a depth of 25 km, the crustal temperature of eastern China (500–600°C) is higher than that of western China (<500°C). At a depth of 100 km, temperatures beneath eastern and southeastern China are higher than the adiabatic temperature of 1300°C, while that beneath west China is lower. The Tarim craton and the Sichuan basin show generally low temperature. At a depth of 150 km, temperatures beneath south China, eastern Yangtze craton, North China craton and around the Qiangtang terrane are higher than the adiabatic temperature of 1300°C, but is the lowest beneath the Sichuan basin and the regions near the Indian-Eurasian collision zone. At a depth of 200 km, very low temperature occurs beneath the Qinghai-Tibet Plateau and the south to the Tarim craton.


crust upper mantle temperature seismic velocity China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artemieva I M, Mooney W D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J Geophys Res, 2001, 106(B8): 16387–16414CrossRefGoogle Scholar
  2. 2.
    Hu S P, Wang J Y, Wang Y H. Deep temperature and lithospheric thickness along the eastern segment of the Heishui-Quanzhou geotraverse. Acta Geophys Sinica (in Chinese), 1994, 37(3): 330–337Google Scholar
  3. 3.
    Wang Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation. Phys Earth Planet In, 2001, 126: 121–146CrossRefGoogle Scholar
  4. 4.
    Wang Y, Wang J Y, Xiong L P, et al. Lithospheric geothermics of major geotectonic units in China mainland. Acta Geosci Sinica (in Chinese), 2001, 22(1): 17–22Google Scholar
  5. 5.
    Huang S B, Wang J Y, Chen M X. Temperature at the Moho. In: Yuan X, ed. Atlas of Geophysics in China (in Chinese). Beijing: Geological Publishing House, 1996. 105–107Google Scholar
  6. 6.
    Powell W G, Chapman D S, Balling N, et al. Continental heat flow density. In: Haenel R, Rybach L, Stegens L, eds. Handbook of Terrestrial Heat-Flow Density Determination. Dordrecht: Kluwer Academic Publishers, 1988. 167–222Google Scholar
  7. 7.
    Mareschal J C, Jaupart C. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett, 2004, 223: 65–77CrossRefGoogle Scholar
  8. 8.
    Ren J S, Wang Z X, Chen B W, et al. The Tectonics of China From a Global View — A Guide to the Tectonic Map of China and Adjacent Regions (in Chinese). Beijing: Geological Publishing House, 1999. 1–32Google Scholar
  9. 9.
    Jaupart C, Mareschal J C. The thermal structure and thickness of continental roots. Lithos, 1999, 48: 93–114CrossRefGoogle Scholar
  10. 10.
    An M, Shi Y. Lithospheric thickness of the Chinese continent. Phys Earth Planet In, 2006, 159: 257–266CrossRefGoogle Scholar
  11. 11.
    Zhang Y S, Tanimoto T. High-resolution global upper mantle structure and plate tectonics. J Geophys Res, 1993, 98: 9793–9823CrossRefGoogle Scholar
  12. 12.
    Sobolev S V, Zeyen H, Stoll G, et al. Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett, 1996, 139(1–2): 147–163CrossRefGoogle Scholar
  13. 13.
    Sobolev S V, Zeyen H, Granet M, et al. Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics, 1997, 275(1–3): 143–164CrossRefGoogle Scholar
  14. 14.
    Goes S, Govers R, Vacher P. Shallow mantle temperatures under Europe from P and S wave tomography. J Geophys Res, 2000, 105(B5): 11153–11169CrossRefGoogle Scholar
  15. 15.
    Goes S, Van der Lee S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J Geophys Res, 2002, 107(B3): 2050CrossRefGoogle Scholar
  16. 16.
    Cammarano F, Goes S, Vacher P, et al. Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet In, 2003, 138(3–4): 197–222CrossRefGoogle Scholar
  17. 17.
    Röhm A H E, Snieder R, Goes S, et al. Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat flow. Earth Planet Sci Lett, 2000, 181: 395–407CrossRefGoogle Scholar
  18. 18.
    Nolet G, Zielhuis A. Low S velocities under the Tornquist-Teisseyre zone: evidence for water injection into the transition zone by subduction. J Geophys Res, 1994, 99: 15813–15820CrossRefGoogle Scholar
  19. 19.
    Shapiro N M, Ritzwoller M H. Thermodynamic constraints on seismic inversions. Geophys J Int, 2004, 157: 1175–1188CrossRefGoogle Scholar
  20. 20.
    Minster J B, Anderson D L. A model of dislocation-controlled rheology for the mantle. Phil Trans R Soc Lond A, 1981, 299: 319–356CrossRefGoogle Scholar
  21. 21.
    Jordan T H. Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In: Boyd F R, Myer H O A, eds. The Mantle Sample: Inclusions in Kimberlites and Other Volcanics. AGU, Washington, D.C., 1979. 1–14Google Scholar
  22. 22.
    McDonough W F, Rudnick R L. Mineralogy and composition of the upper mantle. In: Hemley R J, ed. Ultrahigh-pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior. Washington, DC: Mineralogical Society of America, 1998. 139–164Google Scholar
  23. 23.
    Huang Z, Su W, Peng Y, et al. Rayleigh wave tomography of China and adjacent regions. J Geophys Res, 2003, 108(B2): 2073CrossRefGoogle Scholar
  24. 24.
    Zang S X, Liu Y G, Ning J Y. Thermal structure of the lithosphere in north China. Chinese J Geophys, 2002, 45(1): 51–62Google Scholar
  25. 25.
    Bassin C, Laske G, Masters G. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 2000, 81: F897Google Scholar
  26. 26.
    Pinet C, Jaupart C. The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: geothermal implications. Geophys Res Lett, 1987, 14: 260–263Google Scholar
  27. 27.
    Chapman D S, ed. Thermal gradients in the continental crust. Geological Society Special Publication, 1986. 63–70Google Scholar
  28. 28.
    Chi Q H, Yan M C. Radioactive elements of rocks in North China platform and the thermal structure and temperature distribution of the modern continental lithosphere. Acta Geophys Sinica (in Chinese), 1998, 41(1): 38–48Google Scholar
  29. 29.
    Liu S W, Wang L S, Li C, et al. Thermal-rheological structure of lithosphere beneath the northern flank of Tarim Basin, western China: Implications for geodynamics. Sci China Ser D-Earth Sci, 2004, 47(7): 659–672CrossRefGoogle Scholar
  30. 30.
    Thompson A B. Water in the Earth’s upper mantle. Nature, 1992, 358: 295–302CrossRefGoogle Scholar
  31. 31.
    Jia S X, Zhang X K. Crustal structure and comparison of different tectonic blocks in North China. Chin J Geophys, 2005, 48(3): 672–683Google Scholar
  32. 32.
    Wang J Y. Geothermics in China. Beijing: Seismological Press, 1996. 1–300Google Scholar
  33. 33.
    Chen M X, ed. Geothermics of North China (in Chinese). Beijing: Science Press, 1988. 1–218Google Scholar
  34. 34.
    Yang S Z, Lu X W. Study on thermal conductive structure of the upper part of the crust in North China. Acta Petrol Sinica (in Chinese), 1985, 1(2): 64–73Google Scholar
  35. 35.
    Rodgers A J, Schwartz S Y. Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling: Evidence for partial melt. J Geophys Res, 1998, 103(B4): 7137–7152CrossRefGoogle Scholar
  36. 36.
    Su W, Peng Y J, Zheng Y J, et al. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and adjacent areas. Acta Geosci Sinica (in Chinese), 2002, 23(3): 193–200Google Scholar
  37. 37.
    Ni J, Barazangi M. Velocities and propagation characteristics of Pn, Pg, Sn, and Lg seismic waves beneath the Indian Shield, Himalayan Arc, Tibetan Plateau, and surrounding regions: High uppermost mantle velocities and efficient Sn propagation beneath Tibet. Geophys J R Astr Soc, 1983, 72: 665–689Google Scholar
  38. 38.
    McNamara D E, Walter W R, Owens T J, et al. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J Geophys Res, 1997, 102(B1): 493–506CrossRefGoogle Scholar
  39. 39.
    Li T, Wang Z X. The lithospheric decoupling of the Tarim Basin and surrounding orogenic belts and its relationship with basin-mountain patterns from the analysis of natural earthquake. Earth Sci Front (In Chinese), 2005, 12(3): 125–136Google Scholar
  40. 40.
    Wang L S, Li C, Yang C. The Lithospheric thermal structure beneath Tarim basin, western China. Acta Geophys Sinica (in Chinese), 1996, 39(6): 795–803Google Scholar
  41. 41.
    Teng J W. Great achievements in geophysics in the 20th century and developing frontiers for the 21st century. Earth Sci Front (in Chinese), 2003, 10(1): 117–140Google Scholar
  42. 42.
    Hu S, He L, Wang J. Heat flow in the continental area of China: a new data set. Earth Planet Sci Lett, 2000, 179(2): 407–419CrossRefGoogle Scholar
  43. 43.
    Hu S B, He L J, Wang J Y. Compilation of heat flow data in the China continental area (3rd ed.). Chin J Geophys, 2001, 44(5): 604–618Google Scholar
  44. 44.
    Wang J Y, Huang S P. Compilation of heat flow data in the China continental area (2nd ed.). Seismol Geol (in Chinese), 1990, 12(4): 351–366Google Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  1. 1.Laboratory of Computational GeodynamicsGraduate University of Chinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Crust Deformation and Processes and Institute of GeomechanicsChinese Academy of Geological SciencesBeijingChina

Personalised recommendations