Science in China Series D: Earth Sciences

, Volume 50, Issue 7, pp 1103–1114 | Cite as

Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

  • Tao Zhen Email author
  • Shen ChengDe 
  • Gao QuanZhou 
  • Sun YanMin 
  • Yi WeiXi 
  • Li YingNian 


High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.


Tibetan Plateau alpine meadow soil organic carbon CO2 flux 14C signature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348: 232–234CrossRefGoogle Scholar
  2. 2.
    Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cy, 1995, 9: 23–36CrossRefGoogle Scholar
  3. 3.
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982, 298: 156–159CrossRefGoogle Scholar
  4. 4.
    Trumbore S E. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA, 1997, 94: 8284–8291CrossRefGoogle Scholar
  5. 5.
    Liu Y F, Ou Y H, Cao G. M, et al. Soil carbon emission from ecosystems of eastern Tibetan Plateau. J Nat Res (in Chinese), 2001, 16(2): 152–160Google Scholar
  6. 6.
    Pei Z Y, Ou Y H, Zhou C P. A study on carbon f luxes from alpine grassland ecosystem on Tibetan Plateau. Acta Ecol Sin (in Chinese), 2003, 23(2): 231–236Google Scholar
  7. 7.
    Liu Y F, Ou Y H, Zhang X Z, et al. Carbon Balance in Agro-Ecosystem in Tibetan Plateau. Acta Pedol Sin (in Chinese), 2002, 39(5): 636–642Google Scholar
  8. 8.
    Zhang X Z, Shi P L, Liu Y F, et al. Experimental study on soil CO2 emission in the alpine grassland ecosystem on Tibetan Plateau. Sci China Ser D-Earth Sci, 2005, 48(Suppl. 1): 218–224Google Scholar
  9. 9.
    Zhang J X, Cao G. M, Zhou D W, et al. Diel and seasonal changes of carbon dioxide emission from mollic-cryic cambisols on degraded grassland. Acta Pedol Sin (in Chinese), 2001, 38(1): 32–39Google Scholar
  10. 10.
    Cao G. M, Li Y N, Zhang J X, et al. Values of Carbon Dioxide Emission from Different Land-use Patterns of Alpine Meadow. Environ Sci (in Chinese), 2001, 22(6): 14–19Google Scholar
  11. 11.
    Fang J Y, Liu G H, Xu S L. Carbon pool of terrestrial ecosystem in China. In: Wang G C, Wen Y P. eds. Monitoring of Greenhouse Gas Concentration and Emission and Relevant Processes (in Chinese). Beijing: China Environmental Science Press, 1996. 109–128Google Scholar
  12. 12.
    Wang G X, Cheng G D, Shen Y P. Soil Organic Carbon Pool of Grasslands on the Tibetan Plateau and Its Global Implication. J Glacio Geocryo (in Chinese), 2002, 24(6): 693–700Google Scholar
  13. 13.
    Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China. Sci China Ser D-Earth Sci, 2004, 47(1): 49–57CrossRefGoogle Scholar
  14. 14.
    Wang S Q, Zhou C H. Estimating soil carbon reservior of terrestrial ecosystem in China. Geogr Res (in Chinese), 1999, 18(4): 349–356Google Scholar
  15. 15.
    Wang S Q, Zhou C H, Li K R, et al. Analysis on Spatial Distribution Characteristics of Soil Organic Carbon Reservoir in China. Acta Geogr Sin (in Chinese), 2000, 55(5): 533–544Google Scholar
  16. 16.
    Xie X L, Sun B, Zhou H Z., et al. Organic carbon density and storage in soils of china and spatial analysis. Acta Pedologica Sinica (in Chinese), 2004, 41(1): 35–43Google Scholar
  17. 17.
    Zhao L, Li Y N, Zhao X Q, et al. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chin Sci Bull, 2005, 50(16): 1767–1774CrossRefGoogle Scholar
  18. 18.
    Li Y N, Wang X Q, Gu S, et al. Integrated Monitoring of Alpine Vegetation Types and its Primary Production. Acta Geogr Sin (in Chinese), 2004, 59(1): 40–48Google Scholar
  19. 19.
    Zhang X S. The plateau zonation of vegetation in Xizang. Acta Bot Sin (in Chinese), 1978, 20(2): 140–149Google Scholar
  20. 20.
    Zhou X M, Li J H. The principal vegetation types and their distribution in the in the Haibei Research Station of Alpine Meadow Ecosystem. In: Xia W P, ed. Alpine Meadow Ecosystem (in Chinese). Lanzhou: Gansu People’s Press, 1982. 9–18Google Scholar
  21. 21.
    Zhang Y S, Zhou X M, Wang Q J. A Preliminary Analysis of Production Performance of Oat (Avena sativa) at Alpine Meadow Pasture. Acta Agrestia Sinica (in Chinese), 1998, 16(2): 115–123Google Scholar
  22. 22.
    Wang Y, Ronald A, Trumbore S E. The impact of land use change on C turnover in soils. Global Biogeochem Cy, 1999, 13(1): 47–57CrossRefGoogle Scholar
  23. 23.
    Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci Soc Am J, 1994, 58: 175–180CrossRefGoogle Scholar
  24. 24.
    Trumbore S, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 1996, 272: 393–396CrossRefGoogle Scholar
  25. 25.
    Stuiver M, Polach H. Reporting of 14C data. Radiocarbon, 1977, 19: 355–363Google Scholar
  26. 26.
    Campbell C A, Paul E A, Rennie D A, et al. Applicability of the carbondating method of analysis to soil humus studies. Soil Sci, 1967, 104: 217–224CrossRefGoogle Scholar
  27. 27.
    O’Brien B J, Stout J D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol Biochem, 1978, 10: 309–317CrossRefGoogle Scholar
  28. 28.
    Harrison K, Broecker W, Bonani, G. The effect of changing land use on soil radiocarbon. Science, 1993, 262: 725–726CrossRefGoogle Scholar
  29. 29.
    Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools. Soil Sci Soc Am J, 1993, 57: 1020–1022CrossRefGoogle Scholar
  30. 30.
    Levin I, Kromer B, Schoch-Fischer H, et al. 25 years of tropospheric 14C observations in central Europe. Radiocarbon, 1985, 27: 1–9Google Scholar
  31. 31.
    Manning M R, Melhuish W H. Atmospheric 14C record from Wellington. In: Trends. A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. 1994Google Scholar
  32. 32.
    Levin I, Kromer B. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon, 1997, 39(2): 205–218Google Scholar
  33. 33.
    Cherkinsky A E, Brovkin V A. Dynamics of radiocarbon in soils. Radiocarbon, 1993, 35(3): 363–367Google Scholar
  34. 34.
    Chen Q Q, Shen C D, Sun Y M. et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. Catena, 2002, 49: 217–29CrossRefGoogle Scholar
  35. 35.
    Li Y N, Wang Q X, Du M Y, et al. A study on replenishment and decomposition of organic matter in Mat-Cryic Cambisols and CO2 flux between vegetation and atmosphere. Acta Agrestia Sinica (in Chinese), 2006, 14(2): 165–169Google Scholar
  36. 36.
    Cao G M, Li Y N, Bao X K. The water retention property of the Cryic Cambisols in the alpine area. Soil (in Chinese), 1998, (1): 27–30Google Scholar
  37. 37.
    Gong Z T, et al. Chinese Soil Taxonomy (in Chinese). Beijing: Science Press, 1999. 619–625Google Scholar
  38. 38.
    The Agriculture Planing Office of Qinghai Province. Soils in Qinghai Province. Beijing: Chinese Agricultural Press, 1997. 340–381Google Scholar
  39. 39.
    Lavado R S, Sierra J O, Hashimoto P N. Impact of grazing on soil nutrients in a Pampean grassland. J Range Manage, 1996, 49(5): 452–457Google Scholar
  40. 40.
    Cheng G.W, Luo J. The carbon accumulation and dissipation features of sub-alpine woodland in Mt. Gongga. Acta Geogr Sin (in Chinese), 2003, 58(2): 179–185Google Scholar
  41. 41.
    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China. Acta Ecol Sin (in Chinese), 25(11): 2875–2882Google Scholar
  42. 42.
    Post W M. Organic carbon in soil land the global carbon cycle. In: Heimann M, ed. The Global Carbon Cycle. Berlin: Springer-Verlag Heidelber, 1993. 277–302Google Scholar
  43. 43.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B: 81–99Google Scholar
  44. 44.
    Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev, 1977, 43: 449–529CrossRefGoogle Scholar
  45. 45.
    Schlesinger W H. Carbon balance in terrestrial detritus. Annu Rev Ecol Syst, 1977, 8: 51–81CrossRefGoogle Scholar
  46. 46.
    Wang G C, Du R, Kong Q X, et al. Experimental study on soil respiration of temperate grassland in China. Chin Sci Bull, 2004, 49(6): 642–646CrossRefGoogle Scholar
  47. 47.
    Mack M C, Schuur E A G, Bret-Harte M S, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 2004, 431: 440–443CrossRefGoogle Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Tao Zhen 
    • 1
    • 2
    Email author
  • Shen ChengDe 
    • 2
  • Gao QuanZhou 
    • 1
  • Sun YanMin 
    • 2
  • Yi WeiXi 
    • 2
  • Li YingNian 
    • 3
  1. 1.School of Geography and PlanningSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  3. 3.Northwest Plateau Institute of BiologyChinese Academy of SciencesXiningChina

Personalised recommendations