Advertisement

Science in China Series D

, Volume 49, Issue 6, pp 573–583 | Cite as

Characteristic mineralogy of the Zhutishi granite: Implication for petrogenesis of the late intrusive granite

  • Wang Xiang Email author
  • Yao Xiaojuan 
  • Wang Chuansheng 
Article

Abstract

Many late intrusive granites with strongly peraluminous composition and fine-grained texture occur as stocks or apophysis in the Dadongshan main intrusive granite located in NW Guangdong Province. This paper reports the results of a petrogenetic study of some characteristic minerals (zircon, muscovite and andalusite) from the Zhutishi granite, one of the late intrusive granites in the Dadongshan granite. It is observed that the typological pattern of zircon population in the Zhutishi granite differs significantly from that in the Dadongshan granite, and that muscovite and andalusite, only found in the Zhutishi granite, are of magmatic origin. Therefore, this paper considers that the Zhutishi granite was unlike to be produced through crystal fractionation from the Dadongshan granitic magma as reported by previous authors, but is related closely to the formation of the Dadongshan granite. The hydrothermal fluid, produced by differentiation of the Dadongshan granitic magma at deep magmatic chamber, would penetrate into the source rock of the Zhutishi granite, and make it enriched in H2O and Al2O3; and the decompression after the ascent of the Dadongshan granitic magma in extension regime promotes partial melting of the source rock of the Zhutishi granite, and produces the strongly peraluminous granitic magma. The model proposed in this paper seems to be more reasonable to explain the spacio-temporal relationship between the late intrusive granites with strongly peraluminous feature and the main intrusive granite with metaluminous feature.

Keywords

late intrusive granite main intrusive granite zircon muscovite andalusite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang B T, Dai Y S, Wang J, et al. Geology and magma-dynamical features of Jingjiling composite granitic batholith in the western Nanling region. Geol J China Univ (in Chinese with English abstract), 2001, 7: 50–61.Google Scholar
  2. 2.
    Zhang M, Chen P R, Zhang W L, et al. Geochemical characteristics and petrogenesis of Dadongshan granite pluton in mid Nanling Range. Geochimica (in Chinese with English abstract), 2003, 32: 529–539Google Scholar
  3. 3.
    Guangdong Bureau of Geology and Mineral Resources. Regional Geology of Guangdong Province (in Chinese). Beijing: Geological Publishing House, 01982Google Scholar
  4. 4.
    Haslam H W, Andalusite in the Mullach and Coirean granite, Inverness-shire. Geol Mag, 1971, 108: 97–101Google Scholar
  5. 5.
    Clarke D B, McKenzie C B, Muecke G K, et al. Magmatic andalusite from the South Mountain Batholith, Nova Scotia. Contrib. Mineral Petrol, 1976, 56: 279–287CrossRefGoogle Scholar
  6. 6.
    Chen T Y, Lameyre J. Les complexes leucogranitiques à anatase du Limousin et du Nord-Millevaches; organisation, distribution des minéraux lourds accessoires et des minéralisations. C R Acad Sci Paris, 1983, t.296: 1677–1682Google Scholar
  7. 7.
    Visona D, Lombardo B. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet), Himalayan leucogranite genesis by isobaric heating? Lithos, 2002, 62: 125–150CrossRefGoogle Scholar
  8. 8.
    Wang X. Quantitative description of zircon morphology and its dynamics analysis. Sci China Ser D-Earth Sci, 1998, 41: 422–428Google Scholar
  9. 9.
    Vavra G. On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contrib Mineral Petrol, 1990, 106: 90–99CrossRefGoogle Scholar
  10. 10.
    Wang X, Kienast J R. Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves. Sci China Ser D-Earth Sci, 1999, 42: 544–552Google Scholar
  11. 11.
    Pupin J P. Signification des caractères morphologiques du zircon commun des roches en pétrologie. Base de la méthode typologique. Applications, Thèse Doct Etat, Univ Nice (France), 1976, 394Google Scholar
  12. 12.
    Amenzou M. Pupin J P. Le granite de Camarat (Maure, Var, France): un ensemble polygenique, zone clé entre la Provence et la Corse. C R Acad Sci Paris, 1986, t.303: 697–700Google Scholar
  13. 13.
    Wang X, Wang D Z, Zhou X M. Characteristics of zircons from the complex granitic pluton of Qingtian in southeast Zhejiang and their petrogenetic implication. Acta Petrol Sin (in Chinese with English abstract), 1993, 9: 1–9Google Scholar
  14. 14.
    Wang X, Wu MS. Quantitative study on zircon morphology: discussion on petrogenesis of the Fuzhou granitic complex. Acta Petrol Sin (in Chinese with English abstract), 1999, 15: 247–254Google Scholar
  15. 15.
    Guiyang Institute of Geochemistry, Chinese Academy of Sciences. Geochemistry of Granitoids From Southern China (in Chinese). Beijing: Science Press, 1979Google Scholar
  16. 16.
    Wang X, Griffin W L, O’Reilly S Y, et al. Morphology and geochemistry of zircons from late Mesozoic igneous complexes in coastal SE China: implications for petrogenesis. Mineral Mag. 2002, 66: 235–251CrossRefGoogle Scholar
  17. 17.
    Miller C F, Stoddard E F, Bradfish L T, et al. Composition of plutonic muscovite: genetic implications. Can Mineral, 1981, 19: 25–34Google Scholar
  18. 18.
    Clarke D B. Peraluminous granites. Can Mineral 1981, 19: 1–2Google Scholar
  19. 19.
    Sun T, Chen P R, Zhou X M, et al. Strongly peraluminous granites in eastern Nanling mountains, China: study on muscovites. Geol. Rev (in Chinese with English abstract), 2002, 48: 518–525Google Scholar
  20. 20.
    Monier G, Mergoil-Daniel J. Labernardière H. Générations successives de muscovites et feldspaths potassiques dans les leucogranites du massif de Millevaches (Massif Central français). Bull Mineral, 1984, 107: 55–68Google Scholar
  21. 21.
    Borodina N S, Fershtater G B. Composition and nature of muscovite in granites. Intern Geol Rev, 1988, 30: 375–381CrossRefGoogle Scholar
  22. 22.
    Barbarin B. Genesis of the two main types of peraluminous granitoid. Geology, 1996, 24: 295–298CrossRefGoogle Scholar
  23. 23.
    Anderson J L, Rowley M C. Synkinematic intrusion of peraluminous and associated metaluminous granitic magmas, Whipple Mountains, California. Can Mineral, 1981, 19: 83–101Google Scholar
  24. 24.
    Rose E L, Andalusite and corundum-bearing pegmatites in Yosemite National Park, California. Am Mineral, 1957, 42: 635–647Google Scholar
  25. 25.
    Wang D Z, Chen S H, Liu C S, et al. Characteristics and genesis of primary aluminous minerals in the Tashan tin-bearing granoporphyry in eastern Guangdong Province. Acta Mineral Sin (in Chinese with English abstract), 1995, 15: 249–253Google Scholar
  26. 26.
    Chen F R, Wang D Z, Liu C S. Comparative anatomy of two contrasting mesozoic volcanic-intrusive complexes in NE Jiangxi and its vicinities, China. Geochimica (in Chinese with English abstract), 1995, 24: 169–179Google Scholar
  27. 27.
    Richardson S W, Gilbert M C, Bell P M. Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminum silicate triple point. Am J Sci, 1969, 267: 259–272CrossRefGoogle Scholar
  28. 28.
    Holm J L, Kleppa O J. The thermodynamic properties of the aluminium silicates. Am Mineral, 1966, 51: 1608–1622Google Scholar
  29. 29.
    Deng J F, Zhao H L, Lai S C, et al. Generation of musco-vite/two-mica granite and intracontinental subduction. Earth Science: J. China Univ. Geosci (in Chinese with English abstract), 1994, 19: 139–147Google Scholar
  30. 30.
    Huang W L, Wyllie P J. Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harnet peak, South Dakta. J Geophys Res, 1981, 86: 10515–10529CrossRefGoogle Scholar
  31. 31.
    Clemens J D, Wall V J. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 1988, 21: 53–66CrossRefGoogle Scholar
  32. 32.
    Segnit R E, Kennedy G C. Reactions and melting relations in the system muscovite-quartz at high pressure. Am J Sci, 1961, 259: 280–287CrossRefGoogle Scholar
  33. 33.
    Pitcher W S. Granites and yet more granites, forty years on. Geol. Rundschau, 1987, 76: 51–79CrossRefGoogle Scholar
  34. 34.
    Wang X, Li W X. Typomorphism of the {211}v-type zircon. Chin Sci Bull, 2002, 47: 154–158Google Scholar
  35. 35.
    Wang X, Griffin W L, Wang Z C, et al. Hf isotope composition of zircons and implication for the petrogenesis of Yajiangqiao granite, Hunan Province, China. Chin Sci Bull, 2003, 48: 995–998CrossRefGoogle Scholar
  36. 36.
    Pupin J P, Bonin B, Tessier M, et al. Role de l’eau sur les caractères morphologiques et la cristallisation du zircon dans les granitoides. Bull Soc Géol France, 1978, 7: 721–725Google Scholar
  37. 37.
    Pupin J P. Zircon and granite petrology. Contrib Mineral Petrol, 1980, 73: 207–220CrossRefGoogle Scholar
  38. 38.
    Wang X. Character of zircon from the Inzecca plagiogranite (France). Chin Sci Bull (in Chinese), 1993, 38: 534–537Google Scholar
  39. 39.
    Wang X, Zhou D S. A new equilibrium form of zircon crystal. Sci China Ser B-Chem, 2001, 44: 516–522CrossRefGoogle Scholar
  40. 40.
    Manning D H C. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol, 1981, 76: 206–215CrossRefGoogle Scholar
  41. 41.
    Pichavant M. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. Am Mineral, 1987, 72: 1056–1070Google Scholar
  42. 42.
    Sun T, Zhou X M, Chen P R, et al. Strongly peraluminous granites of Mesozoic in Eastern Nanling Range, southern China: Petrogenesis and implications for tectonics. Sci China Ser D-Earth Sci, 2005, 48: 165–174CrossRefGoogle Scholar
  43. 43.
    Whitney J A. The origin of granite: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull, 1998, 100: 1886–1897CrossRefGoogle Scholar
  44. 44.
    Lameyre J. Les magmas granitiques: leurs comportements, leurs associations et leurs sources. Mém h sér Soc Géol de France, 1980, 10: 51–62Google Scholar
  45. 45.
    Duthou J L, Cantagrel J M, Didier J, et al. Palaeozoic granitoids from the French Massif Central: age and origin studied by Rb/Sr system. Phys Earth Planet Int, 1984, 35: 131–144CrossRefGoogle Scholar
  46. 46.
    Tong J S, Zhong H M, Xia J, et al. Geochemical features and tectonic setting of peraluminous granite in the Lhozag area, southern Tibet. Geol Bull China (in Chinese with English abstract), 2003, 22: 308–318Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Wang Xiang 
    • 1
    Email author
  • Yao Xiaojuan 
    • 1
  • Wang Chuansheng 
    • 1
  1. 1.State Key Laboratory for Mineral Deposit Research, Department of Earth SciencesNanjing UniversityNanjingChina

Personalised recommendations