Science in China Series D

, Volume 49, Issue 1, pp 68–76 | Cite as

Metamorphic zircon from Xindian eclogite, Dabie Terrain: U-Pb age and oxygen isotope composition

  • Chen Daogong 
  • Deloule E. 
  • Ni Tao 


Detailed CL image, U-Pb age and oxygen isotope composition in situ analyses for two metamorphic zircons from ultra-high pressure Xindian eclogite, Southern Dabie Terrain were carried out. There are two kinds of zircon in eclogite. The major subpopulation is podgy and isometric, and interpreted as protolith magmatic zircon with partial recrystallization. Its formation age is 811±22 Ma. The less abundant one is euhedral prismatic with core-rim structure and the rim being metamorphic overgrowth and formed at 221-217 Ma. Zircon CL image strength is mainly controlled by U and Th contents. The magmatic zircon has its Th/U ratio around 1.3 and decreasing with recrystallization, whereas metamorphic zircon has Th/U ratio of lower than 0.1. Magmatic and metamorphic zircon domains all show very low oxygen isotopic compositions with average δ18O values of 1.8‰ and 2.8‰, respectively. The low δ18O values in protolith zircon indicated meteoric water involvement in their magma source region. It may correlate with snowball earth event during Neoproterozoic. It also indicates that protolith zircon could survive its oxygen isotope signature during Dabie eclogite facies UHP metamorphism.


metamorphic zircon zircon U-Pb age zircon oxygen isotopes eclogite Dabie Shan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vavra, G., Gebauer, D., Schmid, R. et al., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122: 337–358.CrossRefGoogle Scholar
  2. 2.
    Vavra, G., Schmid, R., Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibolite to granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps), Contrib. Mineral. Petrol., 1999, 134: 380–404.Google Scholar
  3. 3.
    Rubatto, D., Gebauer, G., Compagnoni, R., Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps), Earth and Planetary Science Letters, 1999, 167: 141–158.CrossRefGoogle Scholar
  4. 4.
    Valley, J. W., Chiarenelli, J. R., McLelland, J. M., Oxygen isotope geochemistry of zircon, Earth Planet Sci. Lett., 1994, 126: 187–206.CrossRefGoogle Scholar
  5. 5.
    King, E. M., Barrie, C. T., Valley, J. W., Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: magmatic values are preserved in zircon, Geology, 1997, 23: 1079–1082.Google Scholar
  6. 6.
    Wang, X., Liou, J. G., Maruyama, S., Coesite-bearing eclogite from the Dabie Mountains, Central China: petrogenesis, P-T paths and implications for regional tectonics, J. Geol., 1992, 100: 231–250.Google Scholar
  7. 7.
    Xu, S., Okay, A. I., Ji, S. et al., Diamond from Dabie Shan metamorphic rocks and its implications for tectonic setting, Science, 1992, 256: 80–92.Google Scholar
  8. 8.
    Okay, A. I., Petrology of diamond and coesite-bearing metamorphic terrane, Dabie Shan, China, Eur. J. Mineral., 5: 659–676.Google Scholar
  9. 9.
    Liou, J. G., Zhang, R. Y., Wang, X. et al., Metamorphism and tectonics of high-pressure and ultrahigh-pressure belts in the Dabie-Sulu region, China (eds. Yin, A., Harrison, M.) The Tectonic Evolution of Asia, New York: Cambridge University Press, 1996, pp 330–344.Google Scholar
  10. 10.
    Carswell, D. A., Wilson, R. N., Zhai, M., Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China, Lithos., 2000, 52: 121–155.CrossRefGoogle Scholar
  11. 11.
    Cong, B. L., Zhai, M. G., Carswell, D. A. et al., Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shuanghe in the Dabieshan, Central China, Eur. J. Mineral., 1995, 7: 119–138.Google Scholar
  12. 12.
    Compston, W., Williams, I. S., Kirschvink, J. L. et al., Zircon U-Pb ages for the Early Cambrian time-scale, J. Geological Society, London, 1992, 149: 171–184.Google Scholar
  13. 13.
    Wiedenbeck, M., Alle, P., Corfu, F. et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandards Newsletter, 1995, 199(1): 1–23.Google Scholar
  14. 14.
    Gurenko, A. A., Chaussidon, M., Schmincke, H. U., Magma ascent and contamination beneath one intraplate volcano: Evidence from S, O isotopes in glass inclusions and their host clinopyrox-ene from Miocene basaltic hyalo-clastites southwest of Gran Ca-naria (Canary Island), Geochim. et Cosmochim. Acta, 2001, 65(23): 4359–4374.Google Scholar
  15. 15.
    Sommerauer, J., Trace element distribution patterns and mineralogical stability of zircons-An application for combined electron microscope technique, Electron microscopy Society of Southern Africa, 1974, Proceedings 4: 71–72.Google Scholar
  16. 16.
    Ohnenstetter, D., Cesbron, F., Remond, F. et al., Emission de cathodoluminescence de deux populations de zircons minerals: tentative d’interpretation, Compt Rendu de I’Academie de Sciences, Paris113, 1991, (Ser.II), 641–647.Google Scholar
  17. 17.
    Poller, U., Huth, J., Hopp, P., What causes the change in cathodoluminescence intensity in natural zircons? Journal of conference abstracts, Goldschmidt 2000, Cambridge Publication, 5(2): 810.Google Scholar
  18. 18.
    Hanchar, J. M. Rudninick, R. L., Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from low crust xenoliths, Lithos., 1995, 36: 289–303.CrossRefGoogle Scholar
  19. 19.
    Yui, T. F., Rumble, D., Chen, C. H. et al., Stable isotope characteristics of eclogites from the ultra-high pressure metamorphic terrain, Eastern China, Chem. Geol., 1997, 135–147.Google Scholar
  20. 20.
    Zheng, Y. F., Fu, B., Li, Y. L. et al., Oxygen and hydrogen isotope geochemistry of ultrahigh pressure eclogites from Dabie Mountains and the Sulu Terrane, Earth Planet. Sci. Lett., 1998, 155: 113–129.CrossRefGoogle Scholar
  21. 21.
    Baker, J., Matthews, A., Mattey, D. et al., Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China, Geochim. Cosmochim. Acta, 1997, 61:1685–1696.CrossRefGoogle Scholar
  22. 22.
    Rumber, D., Yui, T. F., The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China, Geochim. et Cosmochim. Acta, 1998, 62: 3307–3321.Google Scholar
  23. 23.
    Rumble, D., Giorgis, D., Ireland, T. et al., Low δ 18O zircon, U-Pb dating, and the age of Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China, Geochim. et Cosmochim. Acta, 2002, 66: 2299–2306.Google Scholar
  24. 24.
    Zheng, Y. F., Gong, B., Li, L. et al., A large scale of meteoric-hydrothermal alteration at Neoproterozoic in the Yantze Craton of China, Geochim. Cosmochim. Acta, 2002, 66: A874.Google Scholar
  25. 25.
    Zheng, Y. F., Neoproterozoic magmatic activity and global change, Chinese Science Bulletin, 2003, 48(16): 1639–1656.Google Scholar
  26. 26.
    Zheng, Y. F., Wu, Y. B., Chen, F. K. et al., Zircon U-Pb and oxygen isotope evidence for large scale 18O depletion event in igneous rocks during the Neoproterozoic, Geochim. Cosmochim. Acta, 2004, 68:4145–4165.CrossRefGoogle Scholar
  27. 27.
    Watson, E. B., Chermiak, D. J., Oxygen diffusion in zircon, Earth Planet Sci. Lett., 1997, 148: 527–544.CrossRefGoogle Scholar
  28. 28.
    Zheng, Y. F., Fu, B., Estimation of oxygen diffδ18Oty from anion porosity in minerals, Geochemical J., 1998, 32: 71–89.Google Scholar
  29. 29.
    Wilde, S. A., Valley, J. W., Peck, W. H. et al., Evidence from detrital zircons for the existence of continental crust and ocean on the earth 4.4 Gyr ago, Nature, 2001, 409: 175–178.CrossRefGoogle Scholar
  30. 30.
    Bindeman, I. N., Valley, J. W., Formation of low δ 18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA, Geology, 2000, 28: 719–722.CrossRefGoogle Scholar
  31. 31.
    Ames, L., Zhou, G. Z., Xiong, B. C., Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China, Tectonics, 1996, 15(2): 472–489.CrossRefGoogle Scholar
  32. 32.
    Rowley, D. B., Xue, F., Tucker, R. D. et al., Ages of ultra-high pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology, Earth Planet Sci. Lett., 1997, 151: 191–203.CrossRefGoogle Scholar
  33. 33.
    Liao, S., Sinian glacial deposit of Guizhou province, China Earth’s Pre-pleistocene Glacial Record (eds. M. J. Hambrey, W. B. Harland), Cambridge: Cambridge Univ. Press, 1981, 414–423.Google Scholar
  34. 34.
    Wang, Y., Lu, S., Gao, W. et al., Sinian tillites of China, Earth’s Pre-pleistocene Glacial Record (eds. M. J. Hambrey, W. B. Harland), Cambridge: Cambridge Univ. Press, 1981, 386–401.Google Scholar
  35. 35.
    Li, Z. X., Li, X. H., Kinny, P. D. et al., The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci. Lett., 1999, 173: 171–181.CrossRefGoogle Scholar
  36. 36.
    Kirschvink, J. L., Late Proterozoic low-latitude global glaciation: The Snowball Earth (eds. Schopf, J. W., Klein, C.), The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge: Cam-bridge University Press, 1992, 51–52.Google Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Chen Daogong 
    • 1
  • Deloule E. 
    • 2
  • Ni Tao 
    • 1
  1. 1.CAS Key Laboratory of Crust-Mantle Materials and EnvironmentsSchool of Earth and Space Sciences, University of Science and Technology of ChinaHefeiChina
  2. 2.CRPG-CNRS NancyFrance

Personalised recommendations