Advertisement

Der Diabetologe

, Volume 14, Issue 8, pp 605–617 | Cite as

Bewegungstherapie bei Polyneuropathie

  • F. Streckmann
  • M. Balke
CME Zertifizierte Fortbildung
  • 12 Downloads

Zusammenfassung

Periphere Neuropathien sind eine heterogene Gruppe von Erkrankungen des peripheren Nervensystems und mit einer Prävalenz von 5–9 % der Gesamtbevölkerung ein häufiges Krankheitsbild. Kausale Therapien existieren nahezu nur für inflammatorische Neuropathien. Die Sporttherapie ist derzeit eine vielversprechende weitere Option. Neuromuskulär stimulierendes Gleichgewichtstraining kann Symptome der chemotherapieinduzierten Polyneuropathie, hochintensives Ausdauertraining solche der diabetischen Polyneuropathie reduzieren. Bewegungsinterventionen sollten mehr Aufmerksamkeit erhalten, da sie ohne Nebenwirkungen relevante Krankheitszeichen der Polyneuropathie lindern, die Lebensqualität der Patienten erhalten und den Verlauf der medizinischen Therapie günstig beeinflussen können.

Schlüsselwörter

Periphere Erkrankungen des Nervensystems Bewegungsintervention Physiotherapie Körperliche Aktivität Gangunsicherheit, neurologisch bedingt 

Exercise interventions for peripheral neuropathies

Abstract

Peripheral neuropathies encompass a large group of disorders of heterogeneous origin and represent a highly prevalent disease group (5–9% of the population). To date, there are no effective treatment options. Promising results have been achieved with specific exercise interventions. Neuromuscular stimulating balance exercises, for instance, have the potential to reduce and possibly prevent relevant symptoms of toxically induced peripheral neuropathies, while for diabetic neuropathies for instance, endurance training has proven beneficial. Consequently, exercise interventions should receive more attention, as they are a side-effect-free option to target relevant sensory and motor symptoms of neuropathy, not only improving patients’ autonomy and quality of life, but also impacting medical therapy. They are therefore of clinical relevance and can impact supportive therapy.

Keywords

Peripheral nervous system diseases Exercise Physical therapy modalities Physical activity Gait disorder, neurologic 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Streckmann und M. Balke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Singer MA, Vernino SA, Wolfe GI (2012) Idiopathic neuropathy: new paradigms, new promise. J Peripher Nerv Syst 17(Suppl 2):43–49CrossRefPubMedGoogle Scholar
  2. 2.
    Martyn CN, Hughes RA (1997) Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatr 62:310–318CrossRefGoogle Scholar
  3. 3.
    Hanewinckel R, Drenthen J, van Oijen M, Hofman A, van Doorn PA, Ikram MA (2016) Prevalence of polyneuropathy in the general middle-aged and elderly population. Neurology 87:1892–1898CrossRefPubMedGoogle Scholar
  4. 4.
    Kobayashi M, Zochodne DW (2018) Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig.  https://doi.org/10.1111/jdi.12833 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Selvarajah D, Wilkinson ID, Emery CJ et al (2006) Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 29:2664–2669CrossRefPubMedGoogle Scholar
  6. 6.
    Selvarajah D, Wilkinson ID, Davies J, Gandhi R, Tesfaye S (2011) Central nervous system involvement in diabetic neuropathy. Curr Diab Rep 11:310–322CrossRefPubMedGoogle Scholar
  7. 7.
    Selvarajah D, Wilkinson ID, Emery CJ et al (2008) Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus. Diabetologia 51:2088–2092CrossRefPubMedGoogle Scholar
  8. 8.
    Sobol U, Stiff P (2014) Neurologic aspects of plasma cell disorders. Handb Clin Neurol 120:1083–1099CrossRefPubMedGoogle Scholar
  9. 9.
    Streckmann F, Lehmann HC, Balke M, Schenk A, Oberste M, Heller A, Schürhöster A, Elter T, Bloch W, Baumann FT (2018) Sensorimotor- and whole-body vibration training have the potential to reduce motor- and sensory symptoms of Chemotherapy-induced peripheral neuropathy—a randomized controlled pilot trial. submitted in JSCCGoogle Scholar
  10. 10.
    Kneis S, Wehrle A, Freyler K et al (2015) Balance impairments and neuromuscular changes in breast cancer patients with chemotherapy-induced peripheral neuropathy. Clin Neurophysiol 127(2):1481–1490.  https://doi.org/10.1016/j.clinph.2015.07.022 CrossRefPubMedGoogle Scholar
  11. 11.
    Taube W (2012) Neuronale Mechanismen der posturalen Kontrolle und der Einfluss von Gleichgewichtstraining. J Neurol Neurochir Psychiatr 14(2):55–63Google Scholar
  12. 12.
    Granacher U (2006) Neuromuskuläre Leistungsfähigkeit im Alter. C. maurer, GeislingenGoogle Scholar
  13. 13.
    Gollhofer A, Granacher U, Taube W, Melnyk M, Gruber M (2006) Motor control and injury prevention. Dtsch Z Sportmed 57:266–270Google Scholar
  14. 14.
    Ritzmann R, Gollhofer A, Kramer A (2013) The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol 113:1–11CrossRefPubMedGoogle Scholar
  15. 15.
    Rittweger J (2010) Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol 108:877–904CrossRefPubMedGoogle Scholar
  16. 16.
    Scharhag-Rosenberger F, Streckmann F, Schmidt K et al (2014) Wissenschaftliche Studien zu körperlichem Training bei onkologischen Patienten: Empfehlungen zu den Erhebungsmethoden. Dtsch Z Sportmed 11:304–313 (geteilte Erstautorenschaft)CrossRefGoogle Scholar
  17. 17.
    Balducci S, Iacobellisb G, Parisic L, Di Biasea N, Calandrielloa E, Leonettib F, Falluccad F (2006) Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complicat 20:216–223CrossRefPubMedGoogle Scholar
  18. 18.
    Maharaj SS, Yakasai AM (2018) Does a rehabilitation program of aerobic and progressive resisted exercises influence HIV-induced distal neuropathic pain? Am J Phys Med Rehabil 97:364–369CrossRefPubMedGoogle Scholar
  19. 19.
    Rojhani-Shirazi Z, Barzintaj F, Salimifard MR (2017) Comparison the effects of two types of therapeutic exercises Frenkele vs. Swiss ball on the clinical balance measures in patients with type II diabetic neuropathy. Diabetes Metab Syndr 11(Suppl 1):S29–S32CrossRefPubMedGoogle Scholar
  20. 20.
    Gholami F, Nikookheslat S, Salekzamani Y, Boule N, Jafari A (2018) Effect of aerobic training on nerve conduction in men with type 2 diabetes and peripheral neuropathy: a randomized controlled trial. Neurophysiol Clin.  https://doi.org/10.1016/j.neucli.2018.03.001 CrossRefPubMedGoogle Scholar
  21. 21.
    Dixit S, Maiya A, Shastry BA, Guddattu V (2016) Analysis of postural control during quiet standing in a population with diabetic peripheral neuropathy undergoing moderate intensity aerobic exercise training: a single blind, randomized controlled trial. Am J Phys Med Rehabil 95:516–524CrossRefPubMedGoogle Scholar
  22. 22.
    Dixit S, Maiya A, Shastry B (2014) Effect of aerobic exercise on quality of life in population with diabetic peripheral neuropathy in type 2 diabetes: a single blind, randomized controlled trial. Qual Life Res 23:1629–1640CrossRefPubMedGoogle Scholar
  23. 23.
    Grewal GS, Schwenk M, Lee-Eng J et al (2015) Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial. Gerontology 61:567–574CrossRefPubMedGoogle Scholar
  24. 24.
    Akbari M, Jafari H, Moshashaee A, Forugh B (2012) Do diabetic neuropathy patients benefit from balance training? J Rehabil Res Dev 49:333–338CrossRefPubMedGoogle Scholar
  25. 25.
    Song CH, Petrofsky JS, Lee SW, Lee KJ, Yim JE (2011) Effects of an exercise program on balance and trunk proprioception in older adults with diabetic neuropathies. Diabetes Technol Ther 13:803–811CrossRefPubMedGoogle Scholar
  26. 26.
    Eftekhar-Sadat B, Azizi R, Aliasgharzadeh A, Toopchizadeh V, Ghojazadeh M (2015) Effect of balance training with biodex stability system on balance in diabetic neuropathy. Ther Adv Endocrinol Metab 6:233–240CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee K, Lee S, Song C (2013) Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J Exp Med 231:305–314CrossRefPubMedGoogle Scholar
  28. 28.
    Melai T, Schaper NC, IJzerman TH et al (2014) Strength training affects lower extremity gait kinematics, not kinetics, in people with diabetic polyneuropathy. J Appl Biomech 30:221–230CrossRefPubMedGoogle Scholar
  29. 29.
    Allet L, Armand S, de Bie RA et al (2010) The gait and balance of patients with diabetes can be improved: a randomised controlled trial. Diabetologia 53:458–466CrossRefPubMedGoogle Scholar
  30. 30.
    Kordi Yoosefinejad A, Shadmehr A, Olyaei G, Talebian S, Bagheri H, Mohajeri-Tehrani MR (2015) Short-term effects of the whole-body vibration on the balance and muscle strength of type 2 diabetic patients with peripheral neuropathy: a quasi-randomized-controlled trial study. J Diabetes Metab Disord 14:45CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ahn S, Song R (2012) Effects of Tai Chi exercise on glucose control, neuropathy scores, balance, and quality of life in patients with type 2 diabetes and neuropathy. J Altern Complement Med 18:1172–1178CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hung JW, Liou CW, Wang PW et al (2009) Effect of 12-week tai chi chuan exercise on peripheral nerve modulation in patients with type 2 diabetes mellitus. J Rehabil Med 41:924–929CrossRefPubMedGoogle Scholar
  33. 33.
    Najafi B, Talal TK, Grewal GS, Menzies R, Armstrong DG, Lavery LA (2017) Using plantar electrical stimulation to improve postural balance and plantar sensation among patients with diabetic peripheral neuropathy: a randomized double blinded study. J Diabetes Sci Technol 11:693–701CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kanchanasamut W, Pensri P (2017) Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and sensation of diabetic neuropathic feet; a preliminary study. Diabet Foot Ankle 8:1287239CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kruse RL, Lemaster JW, Madsen RW (2010) Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: “feet first” randomized controlled trial. Phys Ther 90:1568–1579CrossRefPubMedGoogle Scholar
  36. 36.
    Richardson JK, Sandman D, Vela S (2001) A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch Phys Med Rehabil 82:205–209CrossRefPubMedGoogle Scholar
  37. 37.
    Kleckner IR, Kamen C, Gewandter JS et al (2018) Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial. Support Care Cancer 26:1019–1028CrossRefPubMedGoogle Scholar
  38. 38.
    Zimmer P, Trebing S, Timmers-Trebing U et al (2018) Eight-week, multimodal exercise counteracts a progress of chemotherapy-induced peripheral neuropathy and improves balance and strength in metastasized colorectal cancer patients: a randomized controlled trial. Support Care Cancer 26:615–624CrossRefPubMedGoogle Scholar
  39. 39.
    Schwenk M, Grewal GS, Holloway D, Muchna A, Garland L, Najafi B (2016) Interactive sensor-based balance training in older cancer patients with chemotherapy-induced peripheral neuropathy: a randomized controlled trial. Gerontology 62:553–563CrossRefPubMedGoogle Scholar
  40. 40.
    Streckmann F, Kneis S, Leifert JA et al (2014) Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 25:493–499CrossRefPubMedGoogle Scholar
  41. 41.
    Matjacic Z, Zupan A (2006) Effects of dynamic balance training during standing and stepping in patients with hereditary sensory motor neuropathy. Disabil Rehabil 28:1455–1459CrossRefPubMedGoogle Scholar
  42. 42.
    Lindeman E, Leffers P, Spaans F et al (1995) Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: a randomized clinical trial. Arch Phys Med Rehabil 76:612–620CrossRefPubMedGoogle Scholar
  43. 43.
    Ruhland JL, Shields RK (1997) The effects of a home exercise program on impairment and health-related quality of life in persons with chronic peripheral neuropathies. Phys Ther 77:1026–1039CrossRefPubMedGoogle Scholar
  44. 44.
    Tomas MT, Santa-Clara H, Bruno PM et al (2013) The impact of exercise training on liver transplanted familial amyloidotic polyneuropathy (FAP) patients. Transplantation 95:372–377CrossRefPubMedGoogle Scholar
  45. 45.
    Graham RC, Hughes RA, White CM (2007) A prospective study of physiotherapist prescribed community based exercise in inflammatory peripheral neuropathy. J Neurol 254:228–235CrossRefPubMedGoogle Scholar
  46. 46.
    Markvardsen LH, Overgaard K, Heje K et al (2018) Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 57:70–76CrossRefPubMedGoogle Scholar
  47. 47.
    World Health Organization (2016) Global report on diabetes. World Health Organization, GenevaGoogle Scholar
  48. 48.
    Dyck PJ, Kratz KM, Karnes JL et al (1993) The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43:817–824CrossRefPubMedGoogle Scholar
  49. 49.
    Visser NA, Notermans NC, Linssen RS, van den Berg LH, Vrancken AF (2015) Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology 84:259–264CrossRefPubMedGoogle Scholar
  50. 50.
    Stubblefield MD, Burstein HJ, Burton AW et al (2009) NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw 7(Suppl 5):S1–S26 (quiz S7–S8)CrossRefPubMedGoogle Scholar
  51. 51.
    Albers JW, Chaudhry V, Cavaletti G, Donehower RC (2014) Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD005228.pub4 CrossRefPubMedGoogle Scholar
  52. 52.
    Schmielau J, Rick O, Reuss-Borst M, Kalusche-Bontemps EM, Steimann M (2017) Rehabilitation of cancer survivors with long-term toxicities. Oncol Res Treat 40:764–771CrossRefPubMedGoogle Scholar
  53. 53.
    Schonsteiner SS, Bauder Missbach H, Benner A et al (2017) A randomized exploratory phase 2 study in patients with chemotherapy-related peripheral neuropathy evaluating whole-body vibration training as adjunct to an integrated program including massage, passive mobilization and physical exercises. Exp Hematol Oncol 6:5CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Streckmann F, Balke M, Lehmann HC et al (2018) The preventive effect of sensorimotor- and vibration exercises on the onset of Oxaliplatin- or vinca-alkaloid induced peripheral neuropathies—STOP. BMC. Cancer 18:62PubMedGoogle Scholar
  55. 55.
    Wijdicks EF, Klein CJ (2017) Guillain-Barre syndrome. Mayo Clin Proc 92:467–479CrossRefPubMedGoogle Scholar
  56. 56.
    Lehmann HC, Kohne A, Meyer zu Horste G, Kieseier BC (2007) Incidence of Guillain-Barre syndrome in Germany. J Peripher Nerv Syst 12:285CrossRefPubMedGoogle Scholar
  57. 57.
    van Doorn PA, Kuitwaard K, Walgaard C, van Koningsveld R, Ruts L, Jacobs BC (2010) IVIG treatment and prognosis in Guillain-Barre syndrome. J Clin Immunol 30(Suppl 1):S74–S78CrossRefPubMedGoogle Scholar
  58. 58.
    Dimachkie MM, Barohn RJ (2013) Guillain-Barre syndrome and variants. Neurol Clin 31:491–510CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Balke M, Wunderlich G, Brunn A, Fink GR, Lehmann HC (2016) Chronic inflammatory demyelinating polyneuropathy. Fortschr Neurol Psychiatr 84:756–769CrossRefPubMedGoogle Scholar
  60. 60.
    Nardone A, Godi M, Artuso A, Schieppati M (2010) Balance rehabilitation by moving platform and exercises in patients with neuropathy or vestibular deficit. Arch Phys Med Rehabil 91:1869–1877CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Departement für Sport, Bewegung und GesundheitUniversität BaselBaselSchweiz
  2. 2.Onkologie, Unispital BaselBaselSchweiz
  3. 3.Institut für Kreislaufforschung und SportmedizinDeutsche Sporthochschule KölnKölnDeutschland
  4. 4.NeurologieUniversitätsklinik KölnKölnDeutschland

Personalised recommendations